Suppr超能文献

量化图像复制研究的可靠性:图像组内相关系数(I2C2)。

Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2).

出版信息

Cogn Affect Behav Neurosci. 2013 Dec;13(4):714-24. doi: 10.3758/s13415-013-0196-0.

Abstract

This article proposes the image intraclass correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intraclass correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical measurement error models for replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2 estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication studies arising from different brain imaging modalities and settings: regional analysis of volumes in normalized space imaging for characterizing brain morphology, seed-voxel brain activation maps based on resting-state functional magnetic resonance imaging (fMRI), and fractional anisotropy in an area surrounding the corpus callosum via diffusion tensor imaging. Notably, resting-state fMRI brain activation maps are found to have low reliability, ranging from .2 to .4. Software and data are available to provide easy access to the proposed methods.

摘要

本文提出了图像组内相关系数(I2C2)作为一种用于成像研究的可靠性的全局度量。I2C2 将经典的组内相关系数(ICC)推广到感兴趣的数据是图像的情况,从而提供了一种直观和方便的度量方法。通过与复制实验的经典测量误差模型建立联系,即使在高维成像研究中,也可以快速计算 I2C2。引入了一种非参数自举程序来量化 I2C2 估计量的变异性。此外,利用蒙特卡罗置换来检验重现性与零 I2C2(代表完全缺乏重现性)的关系。将方法应用于三个来自不同脑成像模式和设置的复制研究:在规范化空间成像中进行的体积的区域分析,用于描述脑形态;基于静息态功能磁共振成像(fMRI)的种子体素脑激活图;以及通过弥散张量成像在胼胝体周围区域的各向异性分数。值得注意的是,静息态 fMRI 脑激活图的可靠性较低,范围从.2 到.4。提供了软件和数据,以方便使用所提出的方法。

相似文献

1
Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2).
Cogn Affect Behav Neurosci. 2013 Dec;13(4):714-24. doi: 10.3758/s13415-013-0196-0.
3
A Comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging.
Neuroimage. 2017 Feb 1;146:100-112. doi: 10.1016/j.neuroimage.2016.11.020. Epub 2016 Nov 12.
4
Statistical representation of mean diffusivity and fractional anisotropy brain maps of normal subjects.
J Magn Reson Imaging. 2006 Dec;24(6):1243-51. doi: 10.1002/jmri.20745.
5
Test-retest reliability of dynamic functional connectivity in naturalistic paradigm functional magnetic resonance imaging.
Hum Brain Mapp. 2022 Mar;43(4):1463-1476. doi: 10.1002/hbm.25736. Epub 2021 Dec 6.
8
Intersession reliability of fMRI activation for heat pain and motor tasks.
Neuroimage Clin. 2014 Jul 22;5:309-21. doi: 10.1016/j.nicl.2014.07.005. eCollection 2014.
10
Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners.
Neuroimage. 2010 Jul 15;51(4):1384-94. doi: 10.1016/j.neuroimage.2010.03.046. Epub 2010 Mar 23.

引用本文的文献

1
Challenges in measuring individual differences of brain function.
Imaging Neurosci (Camb). 2025 Jan 7;3. doi: 10.1162/imag_a_00430. eCollection 2025.
2
Comparing reliability-based measures of functional connectivity between movie and rest: An ROI-based approach.
Imaging Neurosci (Camb). 2025 Jan 2;3. doi: 10.1162/imag_a_00411. eCollection 2025.
4
Time-varying functional connectivity as Wishart processes.
Imaging Neurosci (Camb). 2024 Jun 5;2. doi: 10.1162/imag_a_00184. eCollection 2024.
5
Variability of multidimensional diffusion-relaxation MRI estimates in the human brain.
Imaging Neurosci (Camb). 2024 Dec 11;2. doi: 10.1162/imag_a_00387. eCollection 2024.
6
Unscaled Indices for Assessing Agreement of Functional Data.
Biom J. 2025 Feb;67(1):e70039. doi: 10.1002/bimj.70039.
7
Precision data-driven modeling of cortical dynamics reveals person-specific mechanisms underpinning brain electrophysiology.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2409577121. doi: 10.1073/pnas.2409577121. Epub 2025 Jan 17.
8
Moving beyond processing- and analysis-related variation in resting-state functional brain imaging.
Nat Hum Behav. 2024 Oct;8(10):2003-2017. doi: 10.1038/s41562-024-01942-4. Epub 2024 Aug 5.
10
Assessing intra- and inter-method agreement of functional data.
Stat Methods Med Res. 2024 Jan;33(1):112-129. doi: 10.1177/09622802231219862. Epub 2023 Dec 28.

本文引用的文献

1
Multilevel Functional Principal Component Analysis for High-Dimensional Data.
J Comput Graph Stat. 2011;20(4):852-873. doi: 10.1198/jcgs.2011.10122.
2
Bootstrap-based inference on the difference in the means of two correlated functional processes.
Stat Med. 2012 Nov 20;31(26):3223-40. doi: 10.1002/sim.5439. Epub 2012 Aug 1.
3
Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures.
Neuroimage. 2012 Jan 16;59(2):1404-12. doi: 10.1016/j.neuroimage.2011.08.044. Epub 2011 Aug 23.
5
Longitudinal functional principal component analysis.
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
6
Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis.
Neuroimage. 2011 Jul 15;57(2):431-9. doi: 10.1016/j.neuroimage.2011.04.044. Epub 2011 Apr 30.
7
Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis.
Neurology. 2011 Jan 11;76(2):179-86. doi: 10.1212/WNL.0b013e318206ca61.
8
Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data.
Neuroimage. 2011 Apr 1;55(3):1132-46. doi: 10.1016/j.neuroimage.2010.12.047. Epub 2010 Dec 29.
10
Multi-parametric neuroimaging reproducibility: a 3-T resource study.
Neuroimage. 2011 Feb 14;54(4):2854-66. doi: 10.1016/j.neuroimage.2010.11.047. Epub 2010 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验