Suppr超能文献

网络功能位点中的热点。

Hot spots in a network of functional sites.

机构信息

Department of Bioengineering, Marmara University, Goztepe, Istanbul, Turkey.

出版信息

PLoS One. 2013 Sep 2;8(9):e74320. doi: 10.1371/journal.pone.0074320. eCollection 2013.

Abstract

It is of significant interest to understand how proteins interact, which holds the key phenomenon in biological functions. Using dynamic fluctuations in high frequency modes, we show that the Gaussian Network Model (GNM) predicts hot spot residues with success rates ranging between S 8-58%, C 84-95%, P 5-19% and A 81-92% on unbound structures and S 8-51%, C 97-99%, P 14-50%, A 94-97% on complex structures for sensitivity, specificity, precision and accuracy, respectively. High specificity and accuracy rates with a single property on unbound protein structures suggest that hot spots are predefined in the dynamics of unbound structures and forming the binding core of interfaces, whereas the prediction of other functional residues with similar dynamic behavior explains the lower precision values. The latter is demonstrated with the case studies; ubiquitin, hen egg-white lysozyme and M2 proton channel. The dynamic fluctuations suggest a pseudo network of residues with high frequency fluctuations, which could be plausible for the mechanism of biological interactions and allosteric regulation.

摘要

了解蛋白质如何相互作用具有重要意义,这是生物功能的关键现象。我们利用高频模式的动态波动,表明高斯网络模型(GNM)在未结合结构上预测热点残基的成功率在 S 8-58%、C 84-95%、P 5-19% 和 A 81-92%之间,在复合物结构上的成功率在 S 8-51%、C 97-99%、P 14-50%、A 94-97%之间,分别用于敏感性、特异性、精度和准确性。在未结合蛋白结构上具有单一特性的高特异性和准确性率表明,热点是在未结合结构的动力学中预先确定的,并且形成界面的结合核心,而具有类似动态行为的其他功能残基的预测则解释了较低的精度值。这一点通过案例研究得到了证明;泛素、鸡卵清溶菌酶和 M2 质子通道。动态波动表明存在具有高频波动的残基伪网络,这可能是生物相互作用和变构调节机制的合理假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32e1/3759471/93641c215a3f/pone.0074320.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验