Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität and European Theoretical Spectroscopy Facility (ETSF), Max-Wien-Platz 1, D-07743 Jena, Germany.
Nanotechnology. 2013 Oct 11;24(40):405702. doi: 10.1088/0957-4484/24/40/405702. Epub 2013 Sep 12.
We investigate the optical properties of hydrogenated α-Sn nanocrystals up to diameters of 3.6 nm in the framework of an ab initio pseudopotential method including spin-orbit interaction (SOI) and the repeated supercell approximation. The fundamental absorption and emission edges are determined including quasiparticle effects and electron-hole interaction. The atomic geometries in the ground and excited electronic states follow from total energy optimization. We discuss the oscillator strengths of the optical absorption near the fundamental gaps for the most important transitions. We demonstrate that the spectra can only be correctly described including SOI. The strongly size-dependent Stokes shifts between optical absorption and emission are shown to be mainly a consequence of the different atomic geometries.
我们在包含自旋轨道相互作用(SOI)和重复超胞近似的第一性原理赝势方法的框架内研究了氢化α-Sn 纳米晶体直至 3.6nm 直径的光学性质。包括准粒子效应和电子-空穴相互作用在内的基本吸收和发射边缘被确定。基态和激发电子态的原子结构来自总能量优化。我们讨论了光学吸收在最重要跃迁附近的基本间隙附近的振子强度。我们证明只有包括 SOI 才能正确描述光谱。表明光学吸收和发射之间的强烈的尺寸相关斯托克斯位移主要是由于不同的原子结构的结果。