Suppr超能文献

基于动力学谱聚类的动态 PET 图像分割。

Segmentation of dynamic PET images with kinetic spectral clustering.

机构信息

IRIT Université de Toulouse, UMR CNRS F-5505, Toulouse, France.

出版信息

Phys Med Biol. 2013 Oct 7;58(19):6931-44. doi: 10.1088/0031-9155/58/19/6931. Epub 2013 Sep 13.

Abstract

Segmentation is often required for the analysis of dynamic positron emission tomography (PET) images. However, noise and low spatial resolution make it a difficult task and several supervised and unsupervised methods have been proposed in the literature to perform the segmentation based on semi-automatic clustering of the time activity curves of voxels. In this paper we propose a new method based on spectral clustering that does not require any prior information on the shape of clusters in the space in which they are identified. In our approach, the p-dimensional data, where p is the number of time frames, is first mapped into a high dimensional space and then clustering is performed in a low-dimensional space of the Laplacian matrix. An estimation of the bounds for the scale parameter involved in the spectral clustering is derived. The method is assessed using dynamic brain PET images simulated with GATE and results on real images are presented. We demonstrate the usefulness of the method and its superior performance over three other clustering methods from the literature. The proposed approach appears as a promising pre-processing tool before parametric map calculation or ROI-based quantification tasks.

摘要

分割通常是进行动态正电子发射断层扫描 (PET) 图像分析所必需的。然而,由于噪声和低空间分辨率,这是一项艰巨的任务,因此已经在文献中提出了几种有监督和无监督的方法,以便根据体素的时间活动曲线的半自动聚类来进行分割。在本文中,我们提出了一种基于谱聚类的新方法,该方法不需要对聚类在其被识别的空间中的形状有任何先验信息。在我们的方法中,首先将 p 维数据(其中 p 是时间帧的数量)映射到高维空间中,然后在拉普拉斯矩阵的低维空间中进行聚类。导出了谱聚类中涉及的尺度参数的边界估计。该方法使用 GATE 模拟的动态脑 PET 图像进行评估,并呈现真实图像的结果。我们证明了该方法的有用性及其优于文献中其他三种聚类方法的性能。该方法在进行参数图计算或基于 ROI 的定量任务之前,是一种很有前途的预处理工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验