Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Taipei City, Zhongzheng Dist., 100, Taiwan.
Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA.
Med Phys. 2019 Apr;46(4):1777-1784. doi: 10.1002/mp.13448. Epub 2019 Mar 4.
Parametric images obtained from kinetic modeling of dynamic positron emission tomography (PET) data provide a new way of visualizing quantitative parameters of the tracer kinetics. However, due to the high noise level in pixel-wise image-driven time-activity curves, parametric images often suffer from poor quality and accuracy. In this study, we propose an indirect parameter estimation framework which aims to improve the quality and quantitative accuracy of parametric images.
Three different approaches related to noise reduction and advanced curve fitting algorithm are used in the proposed framework. First, dynamic PET images are denoised using a kernel-based denoising method and the highly constrained backprojection technique. Second, gradient-free curve fitting algorithms are exploited to improve the accuracy and precision of parameter estimates. Third, a kernel-based post-filtering method is applied to parametric images to further improve the quality of parametric images. Computer simulations were performed to evaluate the performance of the proposed framework.
The simulation results showed that when compared to the Gaussian filtering, the proposed denoising method could provide better PET image quality, and consequentially improve the quality and quantitative accuracy of parametric images. In addition, gradient-free optimization algorithms (i.e., pattern search) can result in better parametric images than the gradient-based curve fitting algorithm (i.e., trust-region-reflective). Finally, our results showed that the proposed kernel-based post-filtering method could further improve the precision of parameter estimates while maintaining the accuracy of parameter estimates.
从动态正电子发射断层扫描(PET)数据的动力学建模中获得的参数图像为可视化示踪剂动力学的定量参数提供了一种新方法。然而,由于像素级图像驱动的时间活动曲线中的噪声水平较高,参数图像通常质量和准确性较差。在这项研究中,我们提出了一种间接参数估计框架,旨在提高参数图像的质量和定量准确性。
所提出的框架中使用了三种与降噪和先进的曲线拟合算法相关的不同方法。首先,使用基于核的降噪方法和高度约束的反向投影技术对动态 PET 图像进行降噪。其次,利用无梯度曲线拟合算法来提高参数估计的准确性和精度。第三,应用基于核的后滤波方法对参数图像进行后处理,以进一步提高参数图像的质量。进行了计算机模拟以评估所提出框架的性能。
模拟结果表明,与高斯滤波相比,所提出的降噪方法可以提供更好的 PET 图像质量,从而提高参数图像的质量和定量准确性。此外,无梯度优化算法(即模式搜索)可以比基于梯度的曲线拟合算法(即信赖域反射)产生更好的参数图像。最后,我们的结果表明,所提出的基于核的后滤波方法可以在保持参数估计准确性的同时进一步提高参数估计的精度。