Chen Shuhang, Liu Huafeng, Hu Zhenghui, Zhang Heye, Shi Pengcheng, Chen Yunmei
IEEE Trans Biomed Eng. 2015 Jul;62(7):1784-95. doi: 10.1109/TBME.2015.2404296. Epub 2015 Feb 18.
Although of great clinical value, accurate and robust reconstruction and segmentation of dynamic positron emission tomography (PET) images are great challenges due to low spatial resolution and high noise. In this paper, we propose a unified framework that exploits temporal correlations and variations within image sequences based on low-rank and sparse matrix decomposition. Thus, the two separate inverse problems, PET image reconstruction and segmentation, are accomplished in a simultaneous fashion. Considering low signal to noise ratio and piece-wise constant assumption of PET images, we also propose to regularize low-rank and sparse matrices with vectorial total variation norm. The resulting optimization problem is solved by augmented Lagrangian multiplier method with variable splitting. The effectiveness of proposed approach is validated on realistic Monte Carlo simulation datasets and the real patient data.
尽管具有很大的临床价值,但由于空间分辨率低和噪声高,动态正电子发射断层扫描(PET)图像的准确、稳健重建和分割面临巨大挑战。在本文中,我们提出了一个统一框架,该框架基于低秩和稀疏矩阵分解利用图像序列中的时间相关性和变化。因此,PET图像重建和分割这两个单独的逆问题以同时的方式完成。考虑到PET图像的低信噪比和逐段恒定假设,我们还提出用矢量总变分范数对低秩和稀疏矩阵进行正则化。通过带变量分裂的增广拉格朗日乘数法求解由此产生的优化问题。所提方法的有效性在实际的蒙特卡罗模拟数据集和真实患者数据上得到了验证。