Department of Radiology, Johns Hopkins University, Baltimore, MD 21287, USA. Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21287, USA.
Phys Med Biol. 2013 Oct 7;58(19):6945-68. doi: 10.1088/0031-9155/58/19/6945. Epub 2013 Sep 13.
Positron emission tomography imaging is affected by a number of resolution degrading phenomena, including positron range, photon non-collinearity and inter-crystal blurring. An approach to this issue is to model some or all of these effects within the image reconstruction task, referred to as resolution modeling (RM). This approach is commonly observed to yield images of higher resolution and subsequently contrast, and can be thought of as improving the modulation transfer function. Nonetheless, RM can substantially alter the noise distribution. In this work, we utilize noise propagation models in order to accurately characterize the noise texture of reconstructed images in the presence of RM. Furthermore we consider the task of lesion or defect detection, which is highly determined by the noise distribution as quantified using the noise power spectrum. Ultimately, we use this framework to demonstrate why conventional trade-off analyses (e.g. contrast versus noise, using simplistic noise metrics) do not provide a complete picture of the impact of RM and that improved performance of RM according to such analyses does not necessarily translate to the superiority of RM in detection task performance.
正电子发射断层成像受到许多分辨率降低的现象的影响,包括正电子射程、光子非共线和晶间模糊。解决这个问题的一种方法是在图像重建任务中对这些效应中的一些或全部进行建模,称为分辨率建模(RM)。这种方法通常会产生更高分辨率和对比度的图像,可以认为是改善了调制传递函数。然而,RM 会大大改变噪声分布。在这项工作中,我们利用噪声传播模型来准确地描述 RM 存在时重建图像的噪声纹理。此外,我们还考虑了病灶或缺陷检测的任务,这主要取决于噪声分布,而噪声分布可以通过噪声功率谱来量化。最终,我们使用这个框架来解释为什么传统的权衡分析(例如,使用简单的噪声指标来衡量对比度与噪声)不能全面描述 RM 的影响,而且根据这些分析,RM 的性能提高并不一定意味着 RM 在检测任务性能方面具有优越性。