Authors' Affiliations: Laboratory of Molecular Pathology, Ludwig Institute for Cancer Research; Moores Cancer Center; University of California San Diego, La Jolla; Celgene Corporation, San Diego; Department of Neurological Surgery and Brain Tumor Research Center, University of California at San Francisco, San Francisco; California Institute of Technology, Pasadena; Henry Singleton Brain Tumor Program; Jonsson Comprehensive Cancer Center; Department of Neurology, David Geffen UCLA School of Medicine; Department of Molecular and Medical Pharmacology; UCLA Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, California; Celgene Corporation, Summit, New Jersey; Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center and Arthur G. James Cancer Hospital, Columbus, Ohio; Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy; INSERM; Metabolomics Platform, Institut Gustave Roussy, Villejuif; Université Paris Descartes/Sorbonne Paris Cité; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers; and Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France.
Clin Cancer Res. 2013 Oct 15;19(20):5722-32. doi: 10.1158/1078-0432.CCR-13-0527. Epub 2013 Sep 12.
mTOR pathway hyperactivation occurs in approximately 90% of glioblastomas, but the allosteric mTOR inhibitor rapamycin has failed in the clinic. Here, we examine the efficacy of the newly discovered ATP-competitive mTOR kinase inhibitors CC214-1 and CC214-2 in glioblastoma, identifying molecular determinants of response and mechanisms of resistance, and develop a pharmacologic strategy to overcome it.
We conducted in vitro and in vivo studies in glioblastoma cell lines and an intracranial model to: determine the potential efficacy of the recently reported mTOR kinase inhibitors CC214-1 (in vitro use) and CC214-2 (in vivo use) at inhibiting rapamycin-resistant signaling and blocking glioblastoma growth and a novel single-cell technology-DNA Encoded Antibody Libraries-was used to identify mechanisms of resistance.
Here, we show that CC214-1 and CC214-2 suppress rapamycin-resistant mTORC1 signaling, block mTORC2 signaling, and significantly inhibit the growth of glioblastomas in vitro and in vivo. EGFRvIII expression and PTEN loss enhance sensitivity to CC214 compounds, consistent with enhanced efficacy in strongly mTOR-activated tumors. Importantly, CC214 compounds potently induce autophagy, preventing tumor cell death. Genetic or pharmacologic inhibition of autophagy greatly sensitizes glioblastoma cells and orthotopic xenografts to CC214-1- and CC214-2-induced cell death.
These results identify CC214-1 and CC214-2 as potentially efficacious mTOR kinase inhibitors in glioblastoma, and suggest a strategy for identifying patients most likely to benefit from mTOR inhibition. In addition, this study also shows a central role for autophagy in preventing mTOR-kinase inhibitor-mediated tumor cell death, and suggests a pharmacologic strategy for overcoming it.
mTOR 通路在大约 90%的胶质母细胞瘤中过度激活,但全酶 mTOR 抑制剂雷帕霉素在临床上失败了。在这里,我们研究了新发现的 ATP 竞争性 mTOR 激酶抑制剂 CC214-1 和 CC214-2 在胶质母细胞瘤中的疗效,确定了反应的分子决定因素和耐药机制,并开发了一种克服耐药性的药物策略。
我们在胶质母细胞瘤细胞系和颅内模型中进行了体外和体内研究,以:确定最近报道的 mTOR 激酶抑制剂 CC214-1(体外使用)和 CC214-2(体内使用)抑制雷帕霉素耐药信号和阻断胶质母细胞瘤生长的潜在疗效,以及一种新的单细胞技术——DNA 编码抗体文库——用于鉴定耐药机制。
在这里,我们表明 CC214-1 和 CC214-2 抑制雷帕霉素耐药的 mTORC1 信号,阻断 mTORC2 信号,并显著抑制胶质母细胞瘤在体外和体内的生长。EGFRvIII 表达和 PTEN 缺失增强了对 CC214 化合物的敏感性,与强烈 mTOR 激活肿瘤中的增强疗效一致。重要的是,CC214 化合物强烈诱导自噬,防止肿瘤细胞死亡。自噬的遗传或药理学抑制极大地增强了胶质母细胞瘤细胞和原位异种移植对 CC214-1 和 CC214-2 诱导的细胞死亡的敏感性。
这些结果表明 CC214-1 和 CC214-2 是胶质母细胞瘤中潜在有效的 mTOR 激酶抑制剂,并提出了一种识别最有可能从 mTOR 抑制中获益的患者的策略。此外,这项研究还表明自噬在防止 mTOR 激酶抑制剂介导的肿瘤细胞死亡中起着核心作用,并提出了一种克服耐药性的药物策略。