Suppr超能文献

量子输运的非平衡密度矩阵:作为统计算子的麦克伦南 - 祖巴列夫形式的赫什菲尔德方法。

Nonequilibrium density matrix for quantum transport: Hershfield approach as a McLennan-Zubarev form of the statistical operator.

作者信息

Ness H

机构信息

Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022121. doi: 10.1103/PhysRevE.88.022121. Epub 2013 Aug 13.

Abstract

In this paper, we formally demonstrate that the nonequilibrium density matrix developed by Hershfield for the steady state has the form of a McLennan-Zubarev nonequilibrium ensemble. The correction term in this pseudoequilibrium Gibbs-like ensemble is directly related to the entropy production in the quantum open system. The fact that both methods state that a nonequilibrium steady state can be mapped onto a pseudoequilibrium, permits us to develop nonequilibrium quantities from formal expressions equivalent to the equilibrium case. We provide an example: the derivation of a nonequilibrium distribution function for the electron population in a scattering region in the context of quantum transport.

摘要

在本文中,我们正式证明了赫什菲尔德为稳态所发展的非平衡密度矩阵具有麦克伦南 - 祖巴廖夫非平衡系综的形式。这个类似伪平衡吉布斯系综中的修正项与量子开放系统中的熵产生直接相关。两种方法都表明非平衡稳态可以映射到伪平衡态,这一事实使我们能够从与平衡情况等效的形式表达式中发展出非平衡量。我们给出一个例子:在量子输运的背景下,推导散射区域中电子布居的非平衡分布函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验