Freitas José Nahuel, Esposito Massimiliano
Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162a, avenue de la Faïencerie, Luxembourg, L-1511, Luxembourg, Luxembourg.
Nat Commun. 2022 Aug 29;13(1):5084. doi: 10.1038/s41467-022-32700-7.
The Gibbs distribution universally characterizes states of thermal equilibrium. In order to extend the Gibbs distribution to non-equilibrium steady states, one must relate the self-information [Formula: see text] of microstate x to measurable physical quantities. This is a central problem in non-equilibrium statistical physics. By considering open systems described by stochastic dynamics which become deterministic in the macroscopic limit, we show that changes [Formula: see text] in steady state self-information along deterministic trajectories can be bounded by the macroscopic entropy production Σ. This bound takes the form of an emergent second law [Formula: see text], which contains the usual second law Σ ≥ 0 as a corollary, and is saturated in the linear regime close to equilibrium. We thus obtain a tighter version of the second law of thermodynamics that provides a link between the deterministic relaxation of a system and the non-equilibrium fluctuations at steady state. In addition to its fundamental value, our result leads to novel methods for computing non-equilibrium distributions, providing a deterministic alternative to Gillespie simulations or spectral methods.
吉布斯分布普遍表征热平衡态。为了将吉布斯分布扩展到非平衡稳态,必须将微观态(x)的自信息(I(x))与可测量的物理量联系起来。这是非平衡统计物理学中的一个核心问题。通过考虑由随机动力学描述的开放系统,这些系统在宏观极限下变为确定性系统,我们表明稳态自信息沿确定性轨迹的变化(\Delta I)可以由宏观熵产生(\varSigma)界定。这个界采取一种涌现的第二定律(\varDelta I\leqslant\varSigma)的形式,它包含通常的第二定律(\varSigma\geqslant0)作为一个推论,并且在接近平衡的线性区域达到饱和。因此,我们得到了一个更严格的热力学第二定律版本,它在系统的确定性弛豫和稳态下的非平衡涨落之间建立了联系。除了其基本价值外,我们的结果还导致了计算非平衡分布的新方法,为吉莱斯皮模拟或谱方法提供了一种确定性替代方法。