Parker Joshua, Sherman Eilon, van de Raa Matthias, van der Meer Devaraj, Samelson Lawrence E, Losert Wolfgang
Department of Physics, University of Maryland, College Park, Maryland 20740, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022720. doi: 10.1103/PhysRevE.88.022720. Epub 2013 Aug 29.
Point pattern sets arise in many different areas of physical, biological, and applied research, representing many random realizations of underlying pattern formation mechanisms. These pattern sets can be heterogeneous with respect to underlying spatial processes, which may not be visually distiguishable. This heterogeneity can be elucidated by looking at statistical measures of the patterns sets and using these measures to divide the pattern sets into distinct groups representing like spatial processes. We introduce here a numerical procedure for sorting point pattern sets into spatially homogenous groups using functional principal component analysis (FPCA) applied to the approximated Minkowski functionals of each pattern. We demonstrate that this procedure correctly sorts pattern sets into similar groups both when the patterns are drawn from similar processes and when the second-order characteristics of the pattern are identical. We highlight this routine for distinguishing the molecular patterning of fluorescently labeled cell membrane proteins, a subject of much interest in studies investigating complex spatial signaling patterns involved in the human immune response.
点模式集出现在物理、生物和应用研究的许多不同领域,代表了潜在模式形成机制的许多随机实现。这些模式集在潜在空间过程方面可能是异质的,而这些过程可能在视觉上无法区分。通过查看模式集的统计量度并使用这些量度将模式集划分为代表相似空间过程的不同组,可以阐明这种异质性。我们在此介绍一种数值程序,该程序使用应用于每个模式的近似闵可夫斯基泛函的功能主成分分析(FPCA)将点模式集分类为空间均匀的组。我们证明,当模式来自相似过程以及模式的二阶特征相同时,该程序都能正确地将模式集分类为相似的组。我们强调了这种区分荧光标记细胞膜蛋白分子模式的常规方法,这是研究人类免疫反应中复杂空间信号模式的研究中备受关注的一个主题。