Qin Daoming, Fredrick Kurt
Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
Methods Enzymol. 2013;530:159-72. doi: 10.1016/B978-0-12-420037-1.00008-7.
In actively growing cells, the rate of translation initiation is relatively rapid. As a result, multiple ribosomes simultaneously engaged in translation become spaced along single mRNA molecules. These structures, termed polysomes, can be separated from ribosomal subunits and single ribosomes because they migrate faster through sucrose gradients (Noll, 2008). In fact, polysomes containing various numbers of ribosomes can be resolved from one another since each ribosome adds substantial mass. It is straightforward to prepare bacterial lysates and resolve all the ribosomal fractions using sucrose gradient sedimentation. The resulting polysome 'profile' can provide a sort of snapshot of the translation activity in the cell. Polysome analysis has been used to study the effects of mutations and/or growth conditions on translation and to address whether particular cellular components are associated with the translational machinery (Powers and Noller, 1990; Gregory et al., 1994; Moine and Dahlberg, 1994; Firpo et al., 1996; Fredrick et al., 2000; Ataide et al., 2009; Melamed et al., 2009; Saini et al., 2009). In combination with other techniques, polysome analysis has been used to deduce rate constants for certain phases of translation (e.g., initiation, elongation, termination) (Arava et al., 2003; 2005). Finally, use of purified polysomes in biochemical experiments has been instrumental for the isolation and characterization of translation factors such as ribosome recycling factor (RRF) (Hirashima and Kaji, 1972; Fujiwara et al., 2001; Hirokawa et al., 2002; Ito et al., 2002). Here, we describe a simple and convenient method of preparing and analyzing polysomes from Escherichia coli, which should be generally applicable to many bacteria. We also discuss parameters that influence the ribosome density on mRNA, which should be kept in mind when polysome profiles are being interpreted.
在活跃生长的细胞中,翻译起始速率相对较快。因此,多个同时参与翻译的核糖体沿单个mRNA分子排列。这些结构被称为多核糖体,由于它们在蔗糖梯度中迁移速度更快,所以可以与核糖体亚基和单个核糖体分离(诺尔,2008年)。事实上,含有不同数量核糖体的多核糖体可以彼此区分开来,因为每个核糖体都会增加相当大的质量。制备细菌裂解物并使用蔗糖梯度沉降解析所有核糖体组分很简单。所得的多核糖体“图谱”可以提供细胞中翻译活性的某种快照。多核糖体分析已被用于研究突变和/或生长条件对翻译的影响,以及确定特定细胞成分是否与翻译机制相关(鲍尔斯和诺勒,1990年;格雷戈里等人,1994年;莫伊内和达尔伯格,1994年;菲尔波等人,1996年;弗雷德里克等人,2000年;阿泰德等人,2009年;梅拉梅德等人,2009年;赛尼等人,2009年)。与其他技术相结合,多核糖体分析已被用于推导翻译某些阶段的速率常数(例如起始、延伸、终止)(阿拉瓦等人,2003年;2005年)。最后,在生化实验中使用纯化的多核糖体有助于分离和鉴定翻译因子,如核糖体循环因子(RRF)(平岛和梶,1972年;藤原等人,2001年;广川等人,2002年;伊藤等人,2002年)。在这里,我们描述了一种从大肠杆菌制备和分析多核糖体的简单便捷方法,该方法通常应适用于许多细菌。我们还讨论了影响mRNA上核糖体密度的参数,在解释多核糖体图谱时应牢记这些参数。