Laboratoire de Chimie Biologique, Université des Sciences et Technologies de Lille, CNRS, UMR8576, Cité Scientifique, 59655 Villeneuve d'Ascq, France.
Institute of Biochemistry and Biology and Plant Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
Trends Plant Sci. 2014 Jan;19(1):18-28. doi: 10.1016/j.tplants.2013.08.004. Epub 2013 Sep 12.
In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of α-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida.
在这篇观点文章中,我们提出了一个场景,详细说明了两个关键组成部分是如何协同进化,以确保糖原在远古生菌最后共同祖先的细胞质中向淀粉的转化:(i)从细胞内衣原体病原体中招募一种酶来促进α-葡聚糖链的结晶;(ii)从原有的糖原(去)磷酸化宿主途径中进化出新型的多糖(去)磷酸化酶,以允许这些晶体的周转。我们推测,向淀粉的转变使远古生菌有三个方面受益:更多的碳可以被包装到渗透惰性物质中;宿主可以从引发质体内共生的衣原体病原体中重新获得对碳同化的控制;蓝藻光合作用产物的输出可以整合到新兴的远古生菌中。