Department of Informatics, Centre for Robotics Research, King's College London, London, UK,
Med Biol Eng Comput. 2014 Jan;52(1):17-28. doi: 10.1007/s11517-013-1118-6. Epub 2013 Sep 15.
This paper investigates the use of inverse finite-element modeling (IFEM)-based methods for tissue parameter identification using a rolling indentation probe for surgical palpation. An IFEM-based algorithm is proposed for tissue parameter identification through uniaxial indentation. IFEM-based algorithms are also created for locating and identifying the properties of an embedded tumor through rolling indentation of the soft tissue. Two types of parameter identification for the tissue tumor are investigated (1) identifying the stiffness (μ) of a tumor at a known depth and (2) estimating the depth of the tumor (D) with known mechanical properties. The efficiency of proposed methods has been evaluated through silicone and porcine kidney experiments for both uniaxial indentation and rolling indentation. The results show that both of the proposed IFEM methods for uniaxial indentation and rolling indentation have good robustness and can rapidly converge to the correct results. The tissue properties estimated using the developed method are generic and in good agreement with results obtained from standard material tests. The estimation error of μ through uniaxial indentation is below 3 % for both silicone and kidney; the estimation error of μ for the tumor through rolling indentation is 7-9 %. The estimation error of D through rolling indentation is 1-2 mm.
本文研究了使用基于逆有限元建模(IFEM)的方法,通过滚动压痕探头进行手术触诊,对组织参数进行识别。提出了一种基于 IFEM 的算法,通过单轴压痕进行组织参数识别。还创建了基于 IFEM 的算法,用于通过软组织的滚动压痕定位和识别嵌入式肿瘤的特性。研究了组织肿瘤的两种类型的参数识别(1)在已知深度处识别肿瘤的刚度(μ),(2)用已知力学性能估计肿瘤的深度(D)。通过硅酮和猪肾实验,对两种压痕(单轴和滚动)的提出方法的效率进行了评估。结果表明,用于单轴压痕和滚动压痕的两种 IFEM 方法都具有很好的鲁棒性,可以快速收敛到正确的结果。使用开发的方法估计的组织特性是通用的,与从标准材料测试中获得的结果非常吻合。通过单轴压痕测量μ的估计误差低于硅酮和肾脏的 3%;通过滚动压痕测量肿瘤μ的估计误差为 7-9%。通过滚动压痕测量 D 的估计误差为 1-2 毫米。