Suppr超能文献

一种新的数据挖掘方法,用于搜索诱导对齐的行为特性及其在斑马鱼(Oryzias latipes)中的社会学习中的作用。

A new data-mining method to search for behavioral properties that induce alignment and their involvement in social learning in medaka fish (Oryzias latipes).

机构信息

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

出版信息

PLoS One. 2013 Sep 6;8(9):e71685. doi: 10.1371/journal.pone.0071685. eCollection 2013.

Abstract

BACKGROUND

Coordinated movement in social animal groups via social learning facilitates foraging activity. Few studies have examined the behavioral cause-and-effect between group members that mediates this social learning.

METHODOLOGY/PRINCIPAL FINDINGS: We first established a behavioral paradigm for visual food learning using medaka fish and demonstrated that a single fish can learn to associate a visual cue with a food reward. Grouped medaka fish (6 fish) learn to respond to the visual cue more rapidly than a single fish, indicating that medaka fish undergo social learning. We then established a data-mining method based on Kullback-Leibler divergence (KLD) to search for candidate behaviors that induce alignment and found that high-speed movement of a focal fish tended to induce alignment of the other members locally and transiently under free-swimming conditions without presentation of a visual cue. The high-speed movement of the informed and trained fish during visual cue presentation appeared to facilitate the alignment of naïve fish in response to some visual cues, thereby mediating social learning. Compared with naïve fish, the informed fish had a higher tendency to induce alignment of other naïve fish under free-swimming conditions without visual cue presentation, suggesting the involvement of individual recognition in social learning.

CONCLUSIONS/SIGNIFICANCE: Behavioral cause-and-effect studies of the high-speed movement between fish group members will contribute to our understanding of the dynamics of social behaviors. The data-mining method used in the present study is a powerful method to search for candidates factors associated with inter-individual interactions using a dataset for time-series coordinate data of individuals.

摘要

背景

通过社会学习协调社会动物群体的运动有助于觅食活动。很少有研究探讨过介导这种社会学习的群体成员之间的行为因果关系。

方法/主要发现:我们首先使用斑马鱼建立了视觉食物学习的行为范式,并证明了一条鱼可以学会将视觉线索与食物奖励联系起来。成群的斑马鱼(6 条)比单条鱼更快地学会对视觉线索做出反应,表明斑马鱼经历了社会学习。然后,我们建立了一种基于 Kullback-Leibler 散度(KLD)的数据挖掘方法来搜索诱导对齐的候选行为,并发现焦点鱼的高速运动往往会在没有视觉线索呈现的自由游动条件下局部和暂时诱导其他成员的对齐。在视觉线索呈现期间,有信息和受过训练的鱼的高速运动似乎有助于使未受训练的鱼对某些视觉线索做出反应,从而介导社会学习。与未受训练的鱼相比,有信息的鱼在没有视觉线索呈现的自由游动条件下更倾向于诱导其他未受训练的鱼对齐,这表明个体识别参与了社会学习。

结论/意义:对鱼群成员之间高速运动的行为因果关系的研究将有助于我们理解社会行为的动态。本研究中使用的数据挖掘方法是一种强大的方法,可用于使用个体时间序列坐标数据集搜索与个体间相互作用相关的候选因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/763e/3765494/bdc94698db36/pone.0071685.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验