Isoe Yasuko, Mabene Yasmine Fatima, Bind Marie-Abèle, Engert Florian
Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA.
Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America.
bioRxiv. 2025 Aug 27:2025.08.22.671687. doi: 10.1101/2025.08.22.671687.
Animals in different ecological niches have evolved different sensory capacities to detect behaviorally relevant sensory signals. How behavioral algorithms and neural networks adapt to environmental demands remains unknown. We compared spatiotemporal visual motion processing in larval zebrafish () and medaka () using whole-field motion stimuli. We find that medaka integrated motion over visual fields twice as large as zebrafish and showed greater sensitivity to peripheral visual information. Temporally, zebrafish respond robustly to stimuli with lifetimes as short as 100 ms, while medaka require lifetimes exceeding one second and retain motion information for several seconds after stimulus offset. These different time constants suggest that medaka prioritize object classification and persistence detection, such as conspecifics in structured social groups, while zebrafish specialize in rapid background motion detection for navigation in variable flow environments. Our findings demonstrate how neural computation adapts to species-specific ecological and social demands.
处于不同生态位的动物已经进化出不同的感官能力,以检测与行为相关的感官信号。行为算法和神经网络如何适应环境需求仍然未知。我们使用全场运动刺激比较了斑马鱼幼体和青鳉的时空视觉运动处理。我们发现,青鳉整合运动的视野范围是斑马鱼的两倍,并且对周边视觉信息表现出更高的敏感性。在时间方面,斑马鱼对持续时间短至100毫秒的刺激有强烈反应,而青鳉则需要持续时间超过一秒的刺激,并且在刺激消失后还能保留运动信息几秒钟。这些不同的时间常数表明,青鳉优先进行物体分类和持久性检测,例如在结构化社会群体中的同种个体,而斑马鱼则专门用于在可变水流环境中导航的快速背景运动检测。我们的研究结果证明了神经计算是如何适应物种特定的生态和社会需求的。