Suppr超能文献

视紫红质研究对G蛋白偶联受体激活的相关性。

Relevance of rhodopsin studies for GPCR activation.

作者信息

Deupi Xavier

机构信息

Condensed Matter Theory Group and Laboratory of Biomolecular Research, Paul Scherrer Institute, WHGA/106, CH-5232 Villigen PSI, Switzerland.

出版信息

Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13.

Abstract

Rhodopsin, the dim-light photoreceptor present in the rod cells of the retina, is both a retinal-binding protein and a G protein-coupled receptor (GPCR). Due to this conjunction, it benefits from an arsenal of spectroscopy techniques that can be used for its characterization, while being a model system for the important family of Class A (also referred to as "rhodopsin-like") GPCRs. For instance, rhodopsin has been a crucial player in the field of GPCR structural biology. Until 2007, it was the only GPCR for which a high-resolution crystal structure was available, so all structure-activity analyses on GPCRs, from structure-based drug discovery to studies of structural changes upon activation, were based on rhodopsin. At present, about a third of currently available GPCR structures are still from rhodopsin. In this review, I show some examples of how these structures can still be used to gain insight into general aspects of GPCR activation. First, the analysis of the third intracellular loop in rhodopsin structures allows us to gain an understanding of the structural and dynamic properties of this region, which is absent (due to protein engineering or poor electron density) in most of the currently available GPCR structures. Second, a detailed analysis of the structure of the transmembrane domains in inactive, intermediate and active rhodopsin structures allows us to detect early conformational changes in the process of ligand-induced GPCR activation. Finally, the analysis of a conserved ligand-activated transmission switch in the transmembrane bundle of GPCRs in the context of the rhodopsin activation cycle, allows us to suggest that the structures of many of the currently available agonist-bound GPCRs may correspond to intermediate active states. While the focus in GPCR structural biology is inevitably moving away from rhodopsin, in other aspects rhodopsin is still at the forefront. For instance, the first studies of the structural basis of disease mutants in GPCRs, or the most detailed analysis of cellular GPCR signal transduction networks using a systems biology approach, have been carried out in rhodopsin. Finally, due again to its unique properties among GPCRs, rhodopsin will likely play an important role in the application of X-ray free electron laser crystallography to time-resolved structural biology in membrane proteins. Rhodopsin, thus, still remains relevant as a model system to study the molecular mechanisms of GPCR activation. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.

摘要

视紫红质是视网膜视杆细胞中存在的暗光感受器,它既是一种视网膜结合蛋白,也是一种G蛋白偶联受体(GPCR)。由于这种结合,它受益于一系列可用于其表征的光谱技术,同时也是A类(也称为“视紫红质样”)GPCR重要家族的模型系统。例如,视紫红质在GPCR结构生物学领域一直是关键角色。直到2007年,它是唯一具有高分辨率晶体结构的GPCR,因此所有关于GPCR的结构-活性分析,从基于结构的药物发现到激活时结构变化的研究,都是基于视紫红质进行的。目前,约三分之一的现有GPCR结构仍然来自视紫红质。在这篇综述中,我展示了一些这些结构如何仍可用于深入了解GPCR激活一般方面的例子。首先,对视紫红质结构中第三个细胞内环的分析使我们能够了解该区域的结构和动态特性,而在大多数现有GPCR结构中该区域不存在(由于蛋白质工程或电子密度差)。其次,对非活性、中间态和活性视紫红质结构中跨膜结构域的结构进行详细分析,使我们能够检测配体诱导的GPCR激活过程中的早期构象变化。最后,在视紫红质激活循环的背景下对GPCR跨膜束中保守的配体激活传递开关进行分析,使我们能够提出许多现有激动剂结合的GPCR结构可能对应于中间活性状态。虽然GPCR结构生物学的重点不可避免地正在从视紫红质转移,但在其他方面视紫红质仍处于前沿。例如,对GPCR疾病突变体结构基础的首次研究,或使用系统生物学方法对细胞GPCR信号转导网络的最详细分析,都是在视紫红质中进行的。最后,同样由于其在GPCR中的独特性质,视紫红质可能在将X射线自由电子激光晶体学应用于膜蛋白的时间分辨结构生物学中发挥重要作用。因此,视紫红质作为研究GPCR激活分子机制的模型系统仍然具有相关性。本文是名为:视网膜蛋白——老狗也能学新招的特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验