Suppr超能文献

利用慢性病管理计划中的电子健康记录预测高血压控制的变化。

Predicting changes in hypertension control using electronic health records from a chronic disease management program.

机构信息

Healthcare Analytics, IBM TJ Watson Research Center, Yorktown Heights, New York, USA.

出版信息

J Am Med Inform Assoc. 2014 Mar-Apr;21(2):337-44. doi: 10.1136/amiajnl-2013-002033. Epub 2013 Sep 17.

Abstract

OBJECTIVE

Common chronic diseases such as hypertension are costly and difficult to manage. Our ultimate goal is to use data from electronic health records to predict the risk and timing of deterioration in hypertension control. Towards this goal, this work predicts the transition points at which hypertension is brought into, as well as pushed out of, control.

METHOD

In a cohort of 1294 patients with hypertension enrolled in a chronic disease management program at the Vanderbilt University Medical Center, patients are modeled as an array of features derived from the clinical domain over time, which are distilled into a core set using an information gain criteria regarding their predictive performance. A model for transition point prediction was then computed using a random forest classifier.

RESULTS

The most predictive features for transitions in hypertension control status included hypertension assessment patterns, comorbid diagnoses, procedures and medication history. The final random forest model achieved a c-statistic of 0.836 (95% CI 0.830 to 0.842) and an accuracy of 0.773 (95% CI 0.766 to 0.780).

CONCLUSIONS

This study achieved accurate prediction of transition points of hypertension control status, an important first step in the long-term goal of developing personalized hypertension management plans.

摘要

目的

常见慢性病(如高血压)费用高昂且难以管理。我们的最终目标是利用电子健康记录中的数据来预测高血压控制恶化的风险和时机。为此,这项工作预测了高血压进入和退出控制的转折点。

方法

在范德比尔特大学医学中心慢性病管理计划中招募的 1294 名高血压患者队列中,患者被建模为随时间推移从临床领域中提取的一系列特征数组,使用信息增益标准来评估其预测性能,将其提炼为核心集。然后使用随机森林分类器计算用于预测转折点的模型。

结果

用于预测高血压控制状态变化的最具预测性的特征包括高血压评估模式、合并症诊断、程序和药物治疗史。最终的随机森林模型的 C 统计量为 0.836(95%CI 0.830 至 0.842),准确性为 0.773(95%CI 0.766 至 0.780)。

结论

本研究实现了对高血压控制状态转折点的准确预测,这是制定个性化高血压管理计划这一长期目标的重要第一步。

相似文献

引用本文的文献

4
The Use of Machine Learning for the Care of Hypertension and Heart Failure.机器学习在高血压和心力衰竭护理中的应用。
JACC Asia. 2021 Sep 21;1(2):162-172. doi: 10.1016/j.jacasi.2021.07.005. eCollection 2021 Sep.
8
CaliForest: Calibrated Random Forest for Health Data.CaliForest:用于健康数据的校准随机森林
Proc ACM Conf Health Inference Learn (2020). 2020 Apr;2020:40-50. doi: 10.1145/3368555.3384461. Epub 2020 Apr 2.

本文引用的文献

4
Cohort profile: The Gubbio Population Study.队列资料:古比奥人群研究。
Int J Epidemiol. 2014 Jun;43(3):713-20. doi: 10.1093/ije/dyt025. Epub 2013 Mar 29.
6
Therapeutic strategies to improve control of hypertension.改善高血压控制的治疗策略。
J Hypertens. 2013 Mar;31 Suppl 1:S9-12. doi: 10.1097/HJH.0b013e32835d2c6c.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验