Healthcare Analytics, IBM TJ Watson Research Center, Yorktown Heights, New York, USA.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):337-44. doi: 10.1136/amiajnl-2013-002033. Epub 2013 Sep 17.
Common chronic diseases such as hypertension are costly and difficult to manage. Our ultimate goal is to use data from electronic health records to predict the risk and timing of deterioration in hypertension control. Towards this goal, this work predicts the transition points at which hypertension is brought into, as well as pushed out of, control.
In a cohort of 1294 patients with hypertension enrolled in a chronic disease management program at the Vanderbilt University Medical Center, patients are modeled as an array of features derived from the clinical domain over time, which are distilled into a core set using an information gain criteria regarding their predictive performance. A model for transition point prediction was then computed using a random forest classifier.
The most predictive features for transitions in hypertension control status included hypertension assessment patterns, comorbid diagnoses, procedures and medication history. The final random forest model achieved a c-statistic of 0.836 (95% CI 0.830 to 0.842) and an accuracy of 0.773 (95% CI 0.766 to 0.780).
This study achieved accurate prediction of transition points of hypertension control status, an important first step in the long-term goal of developing personalized hypertension management plans.
常见慢性病(如高血压)费用高昂且难以管理。我们的最终目标是利用电子健康记录中的数据来预测高血压控制恶化的风险和时机。为此,这项工作预测了高血压进入和退出控制的转折点。
在范德比尔特大学医学中心慢性病管理计划中招募的 1294 名高血压患者队列中,患者被建模为随时间推移从临床领域中提取的一系列特征数组,使用信息增益标准来评估其预测性能,将其提炼为核心集。然后使用随机森林分类器计算用于预测转折点的模型。
用于预测高血压控制状态变化的最具预测性的特征包括高血压评估模式、合并症诊断、程序和药物治疗史。最终的随机森林模型的 C 统计量为 0.836(95%CI 0.830 至 0.842),准确性为 0.773(95%CI 0.766 至 0.780)。
本研究实现了对高血压控制状态转折点的准确预测,这是制定个性化高血压管理计划这一长期目标的重要第一步。