Suppr超能文献

在介入心脏病学中应用机器学习:益处值得付出努力。

Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble.

作者信息

Ben Ali Walid, Pesaranghader Ahmad, Avram Robert, Overtchouk Pavel, Perrin Nils, Laffite Stéphane, Cartier Raymond, Ibrahim Reda, Modine Thomas, Hussin Julie G

机构信息

Service Médico-Chirurgical, Valvulopathies-Chirurgie Cardiaque-Cardiologie Interventionelle Structurelle, Hôpital Cardiologique de Haut Lévèque, Bordeaux, France.

Structural Heart Program and Interventional Cardiology, Université de Montréal, Montreal Heart Institute, Montréal, QC, Canada.

出版信息

Front Cardiovasc Med. 2021 Dec 8;8:711401. doi: 10.3389/fcvm.2021.711401. eCollection 2021.

Abstract

Driven by recent innovations and technological progress, the increasing quality and amount of biomedical data coupled with the advances in computing power allowed for much progress in artificial intelligence (AI) approaches for health and biomedical research. In interventional cardiology, the hope is for AI to provide automated analysis and deeper interpretation of data from electrocardiography, computed tomography, magnetic resonance imaging, and electronic health records, among others. Furthermore, high-performance predictive models supporting decision-making hold the potential to improve safety, diagnostic and prognostic prediction in patients undergoing interventional cardiology procedures. These applications include robotic-assisted percutaneous coronary intervention procedures and automatic assessment of coronary stenosis during diagnostic coronary angiograms. Machine learning (ML) has been used in these innovations that have improved the field of interventional cardiology, and more recently, deep Learning (DL) has emerged as one of the most successful branches of ML in many applications. It remains to be seen if DL approaches will have a major impact on current and future practice. DL-based predictive systems also have several limitations, including lack of interpretability and lack of generalizability due to cohort heterogeneity and low sample sizes. There are also challenges for the clinical implementation of these systems, such as ethical limits and data privacy. This review is intended to bring the attention of health practitioners and interventional cardiologists to the broad and helpful applications of ML and DL algorithms to date in the field. Their implementation challenges in daily practice and future applications in the field of interventional cardiology are also discussed.

摘要

在近期创新和技术进步的推动下,生物医学数据质量和数量的不断提高,再加上计算能力的提升,使得人工智能(AI)在健康和生物医学研究中的应用取得了很大进展。在介入心脏病学领域,人们希望AI能够对心电图、计算机断层扫描、磁共振成像以及电子健康记录等数据进行自动分析和更深入的解读。此外,支持决策的高性能预测模型有可能提高接受介入心脏病学手术患者的安全性、诊断和预后预测能力。这些应用包括机器人辅助经皮冠状动脉介入手术以及在诊断性冠状动脉造影期间自动评估冠状动脉狭窄情况。机器学习(ML)已被用于这些改善介入心脏病学领域的创新中,最近,深度学习(DL)已成为ML在许多应用中最成功的分支之一。DL方法是否会对当前和未来的实践产生重大影响还有待观察。基于DL的预测系统也存在一些局限性,包括缺乏可解释性以及由于队列异质性和样本量小而缺乏通用性。这些系统的临床应用也面临挑战,如伦理限制和数据隐私问题。本综述旨在引起健康从业者和介入心脏病学家对ML和DL算法迄今为止在该领域广泛且有益应用的关注。还讨论了它们在日常实践中的实施挑战以及在介入心脏病学领域的未来应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d64c/8692711/1dac9b662134/fcvm-08-711401-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验