Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3212, Université de Strasbourg, 67084 Strasbourg, France.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16223-8. doi: 10.1073/pnas.1302310110. Epub 2013 Sep 17.
Climbing fibers, the projections from the inferior olive to the cerebellar cortex, carry sensorimotor error and clock signals that trigger motor learning by controlling cerebellar Purkinje cell synaptic plasticity and discharge. Purkinje cells target the deep cerebellar nuclei, which are the output of the cerebellum and include an inhibitory GABAergic projection to the inferior olive. This pathway identifies a potential closed loop in the olivo-cortico-nuclear network. Therefore, sets of Purkinje cells may phasically control their own climbing fiber afferents. Here, using in vitro and in vivo recordings, we describe a genetically modified mouse model that allows the specific optogenetic control of Purkinje cell discharge. Tetrode recordings in the cerebellar nuclei demonstrate that focal stimulations of Purkinje cells strongly inhibit spatially restricted sets of cerebellar nuclear neurons. Strikingly, such stimulations trigger delayed climbing-fiber input signals in the stimulated Purkinje cells. Therefore, our results demonstrate that Purkinje cells phasically control the discharge of their own olivary afferents and thus might participate in the regulation of cerebellar motor learning.
climbing fibers,即从下橄榄核投射到小脑皮层的突起,携带感觉运动误差和时钟信号,通过控制小脑浦肯野细胞的突触可塑性和放电来触发运动学习。浦肯野细胞靶向深部小脑核,后者是小脑的输出核团,包括对下橄榄核的抑制性 GABA 能投射。这条通路确定了橄榄核皮质核网络中潜在的闭环。因此,一组浦肯野细胞可能会相位性地控制自身的 climbing fiber 传入。在这里,我们使用体外和体内记录描述了一种基因修饰的小鼠模型,该模型允许浦肯野细胞放电的特定光遗传学控制。在小脑核中的四极管记录表明,浦肯野细胞的焦点刺激强烈抑制小脑核神经元的空间限制集。引人注目的是,这种刺激会在被刺激的浦肯野细胞中引发延迟的 climbing-fiber 输入信号。因此,我们的结果表明浦肯野细胞相位性地控制自身橄榄核传入的放电,从而可能参与小脑运动学习的调节。