Suppr超能文献

不同解剖部位的组织可以塑造和改变肿瘤微环境,从而影响对治疗的反应。

Tissues in different anatomical sites can sculpt and vary the tumor microenvironment to affect responses to therapy.

机构信息

Cancer Immunology Research Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.

Tumor Angiogenesis Program, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.

出版信息

Mol Ther. 2014 Jan;22(1):18-27. doi: 10.1038/mt.2013.219. Epub 2013 Sep 19.

Abstract

The tumor microenvironment can promote tumor growth and reduce treatment efficacy. Tumors can occur in many sites in the body, but how surrounding normal tissues at different anatomical sites affect tumor microenvironments and their subsequent response to therapy is not known.We demonstrated that tumors from renal, colon, or prostate cell lines in orthotopic locations responded to immunotherapy consisting of three agonist antibodies, termed Tri-mAb, to a much lesser extent than the same tumor type located subcutaneously. A tissue-specific response to Tri-mAb was confirmed by ex vivo separation of subcutaneous (SC) or orthotopic tumor cells from stromal cells, followed by reinjection of tumor cells into the opposite site. Compared with SC tumors, orthotopic tumors had a microenvironment associated with a type 2 immune response, related to immunosuppression, and an involvement of alternatively activated macrophages in the kidney model. Orthotopic kidney tumors were more highly vascularized than SC tumors. Neutralizing the macrophage- and Th2-associated molecules chemokine (C-C motif) ligand 2 or interleukin-13 led to a significantly improved therapeutic effect. This study highlights the importance of the tissue of implantation in sculpting the tumor microenvironment. These are important fundamental issues in tumor biology and crucial factors to consider in the design of experimental models and treatment strategies.

摘要

肿瘤微环境可促进肿瘤生长并降低治疗效果。肿瘤可发生在体内许多部位,但周围不同解剖部位的正常组织如何影响肿瘤微环境及其随后对治疗的反应尚不清楚。我们证明,来自肾、结肠或前列腺细胞系的原位肿瘤对免疫疗法的反应要小得多,该免疫疗法由三种激动型抗体(称为 Tri-mAb)组成,而皮下(SC)同一肿瘤类型的反应则要小得多。通过将皮下(SC)或原位肿瘤细胞与基质细胞从组织特异性反应中分离出来,然后将肿瘤细胞重新注入相反的部位,证实了 Tri-mAb 的组织特异性反应。与 SC 肿瘤相比,原位肿瘤的微环境与 2 型免疫反应相关,与免疫抑制有关,并且在肾脏模型中涉及到交替激活的巨噬细胞。与 SC 肿瘤相比,原位肾肿瘤的血管化程度更高。中和巨噬细胞和 Th2 相关分子趋化因子(C-C 基序)配体 2 或白细胞介素 13 可显著改善治疗效果。这项研究强调了植入组织在塑造肿瘤微环境中的重要性。这些是肿瘤生物学中的重要基础问题,也是设计实验模型和治疗策略时必须考虑的关键因素。

相似文献

2
The TNFRs OX40, 4-1BB, and CD40 as targets for cancer immunotherapy.
Curr Opin Immunol. 2013 Apr;25(2):230-7. doi: 10.1016/j.coi.2013.01.004. Epub 2013 Feb 14.
3
Tissue-Dependent Tumor Microenvironments and Their Impact on Immunotherapy Responses.
Front Immunol. 2018 Jan 31;9:70. doi: 10.3389/fimmu.2018.00070. eCollection 2018.
5
Understanding the Origin and Diversity of Macrophages to Tailor Their Targeting in Solid Cancers.
Front Immunol. 2019 Sep 25;10:2215. doi: 10.3389/fimmu.2019.02215. eCollection 2019.
7
Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies.
Clin Cancer Res. 2015 Mar 1;21(5):1127-38. doi: 10.1158/1078-0432.CCR-14-1339. Epub 2014 Aug 20.
8
CD1d-based combination therapy eradicates established tumors in mice.
J Immunol. 2009 Aug 1;183(3):1911-20. doi: 10.4049/jimmunol.0900796.
9
The Tumor Microenvironment Regulates Sensitivity of Murine Lung Tumors to PD-1/PD-L1 Antibody Blockade.
Cancer Immunol Res. 2017 Sep;5(9):767-777. doi: 10.1158/2326-6066.CIR-16-0365. Epub 2017 Aug 17.
10
Successful immunotherapy with IL-2/anti-CD40 induces the chemokine-mediated mitigation of an immunosuppressive tumor microenvironment.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19455-60. doi: 10.1073/pnas.0909474106. Epub 2009 Nov 5.

引用本文的文献

1
Predictive value of preclinical models for CAR-T cell therapy clinical trials: a systematic review and meta-analysis.
J Immunother Cancer. 2025 Jun 12;13(6):e011698. doi: 10.1136/jitc-2025-011698.
2
Immunosuppressive microenvironment of liver restrains chemotherapeutic efficacy in triple-negative breast cancer.
J Immunother Cancer. 2025 Mar 6;13(3):e010871. doi: 10.1136/jitc-2024-010871.
3
Immunotherapy against glioblastoma using backpack-activated neutrophils.
Bioeng Transl Med. 2024 Aug 13;10(1):e10712. doi: 10.1002/btm2.10712. eCollection 2025 Jan.
4
Targeting Siglec-E facilitates tumor vaccine-induced antitumor immunity in renal carcinoma.
J Immunother Cancer. 2025 Jan 4;13(1):e010521. doi: 10.1136/jitc-2024-010521.
5
Leveraging preclinical models of metastatic breast cancer.
Biochim Biophys Acta Rev Cancer. 2024 Sep;1879(5):189163. doi: 10.1016/j.bbcan.2024.189163. Epub 2024 Jul 29.
6
Nanotechnology Applications in Breast Cancer Immunotherapy.
Small. 2024 Oct;20(41):e2308639. doi: 10.1002/smll.202308639. Epub 2023 Dec 21.
7
Type of anesthesia for cancer resection surgery: No differential impact on cancer recurrence in mouse models of breast cancer.
PLoS One. 2023 Nov 27;18(11):e0293905. doi: 10.1371/journal.pone.0293905. eCollection 2023.
10
Pan-Cancer Study of the Prognosistic Value of Selenium Phosphate Synthase 1.
Cancer Control. 2023 Jan-Dec;30:10732748231170485. doi: 10.1177/10732748231170485.

本文引用的文献

1
Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions.
J Immunol. 2013 Sep 15;191(6):3358-72. doi: 10.4049/jimmunol.1300342. Epub 2013 Aug 16.
2
Depleting tumor-specific Tregs at a single site eradicates disseminated tumors.
J Clin Invest. 2013 Jun;123(6):2447-63. doi: 10.1172/JCI64859.
3
Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients.
Cancer Sci. 2013 Apr;104(4):437-44. doi: 10.1111/cas.12096. Epub 2013 Feb 21.
4
Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease.
Cancer Res. 2013 Feb 1;73(3):1107-17. doi: 10.1158/0008-5472.CAN-12-2418. Epub 2012 Nov 29.
5
HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts.
J Clin Invest. 2012 Oct;122(10):3603-17. doi: 10.1172/JCI62229. Epub 2012 Sep 4.
7
The metastatic niche and stromal progression.
Cancer Metastasis Rev. 2012 Dec;31(3-4):429-40. doi: 10.1007/s10555-012-9373-9.
9
Differential gene expression profiling of primary cutaneous melanoma and sentinel lymph node metastases.
Mod Pathol. 2012 Jun;25(6):828-37. doi: 10.1038/modpathol.2012.32. Epub 2012 Mar 9.
10
Tumor microenvironment: a main actor in the metastasis process.
Clin Exp Metastasis. 2012 Apr;29(4):381-95. doi: 10.1007/s10585-012-9457-5. Epub 2012 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验