Department of Neurophysiology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan.
J Neurosci. 2013 Sep 18;33(38):15161-70. doi: 10.1523/JNEUROSCI.4279-12.2013.
How the visual system reconstructs global patterns of motion from components is an important issue in vision. Conventional studies using plaids have shown that approximately one-third of neurons in cortical area MT respond to one-dimensional (1D) components of a moving pattern (component cells), whereas another third responds to the global two-dimensional (2D) motion of a pattern (pattern cells). Conversely, studies using spots of light or random dots that contain multiple orientations have seldom reported directional tuning that is consistent with 1D motion preference. To bridge the gap between these studies, we recorded from isolated neurons in macaque area MT and measured tuning for velocity (direction and speed) using random dot stimuli. We used the "intersection of constraints" principle to classify our population into pattern-direction-selective (PDS) neurons and component-direction-selective (CDS) neurons. We found a larger proportion of PDS cells (68%) and a smaller proportion of CDS cells (8%) compared with prior studies using plaids. We further compared velocity tuning, measured using random dot stimuli, with direction tuning, measured using plaids. Although there was a correlation between the degree of preference for 2D over 1D motion of the two measurements, tuning seemed to prefer 2D motion using random dot stimuli. Modeling analyses suggest that integration across orientations contributes to the 2D motion preference of both dots and plaids, but opponent inhibition mainly contributes to the 2D motion preference of plaids. We conclude that MT neurons become more capable of identifying a particular 2D velocity when stimuli contain multiple orientations.
视觉系统如何从组成部分重建全局运动模式是视觉中的一个重要问题。传统的使用棋盘格的研究表明,皮质区 MT 中的大约三分之一的神经元对运动模式的一维(1D)成分(组成细胞)做出反应,而另外三分之一的神经元对模式的二维(2D)全局运动做出反应(模式细胞)。相反,使用包含多个方向的光点或随机点的研究很少报告与 1D 运动偏好一致的方向调谐。为了弥合这些研究之间的差距,我们在猕猴 MT 区记录了孤立神经元,并使用随机点刺激测量速度(方向和速度)的调谐。我们使用“约束交叉”原理将我们的群体分类为模式方向选择性(PDS)神经元和组成方向选择性(CDS)神经元。与先前使用棋盘格的研究相比,我们发现 PDS 细胞(68%)的比例较大,而 CDS 细胞(8%)的比例较小。我们进一步比较了使用随机点刺激测量的速度调谐与使用棋盘格测量的方向调谐。尽管两种测量之间对 2D 与 1D 运动的偏好程度存在相关性,但调谐似乎更倾向于使用随机点刺激的 2D 运动。建模分析表明,跨方向的整合有助于点和棋盘格的 2D 运动偏好,但拮抗抑制主要有助于棋盘格的 2D 运动偏好。我们的结论是,当刺激包含多个方向时,MT 神经元更有能力识别特定的 2D 速度。