University of Maryland, College Park.
IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2651-64. doi: 10.1109/TPAMI.2013.88.
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
提出了一种用于学习判别字典的标签一致 K-SVD(LC-KSVD)算法。除了使用训练数据的类别标签外,我们还将标签信息与每个字典项(字典矩阵的列)相关联,以在字典学习过程中强制稀疏编码的可辨别性。更具体地说,我们引入了一种称为“判别稀疏码误差”的新标签一致性约束,并将其与重构误差和分类误差相结合,形成一个统一的目标函数。使用 K-SVD 算法可以有效地获得最优解。我们的算法联合学习单个过完备字典和最优线性分类器。对于内存资源有限的情况,提出了增量字典学习算法。它生成字典,使得具有相同类别标签的特征点具有相似的稀疏码。实验结果表明,在相同的学习条件下,我们的算法在人脸、动作、场景和对象类别识别方面优于许多最近提出的稀疏编码技术。