Suppr超能文献

用于跨主体脑电情感分类的转移判别字典对学习方法

Transfer Discriminative Dictionary Pair Learning Approach for Across-Subject EEG Emotion Classification.

作者信息

Ruan Yang, Du Mengyun, Ni Tongguang

机构信息

HUA LOOKENG Honors College, Changzhou University, Changzhou, China.

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China.

出版信息

Front Psychol. 2022 May 10;13:899983. doi: 10.3389/fpsyg.2022.899983. eCollection 2022.

Abstract

Electroencephalogram (EEG) signals are not easily camouflaged, portable, and noninvasive. It is widely used in emotion recognition. However, due to the existence of individual differences, there will be certain differences in the data distribution of EEG signals in the same emotional state of different subjects. To obtain a model that performs well in classifying new subjects, traditional emotion recognition approaches need to collect a large number of labeled data of new subjects, which is often unrealistic. In this study, a transfer discriminative dictionary pair learning (TDDPL) approach is proposed for across-subject EEG emotion classification. The TDDPL approach projects data from different subjects into the domain-invariant subspace, and builds a transfer dictionary pair learning based on the maximum mean discrepancy (MMD) strategy. In the subspace, TDDPL learns shared synthesis and analysis dictionaries to build a bridge of discriminative knowledge from source domain (SD) to target domain (TD). By minimizing the reconstruction error and the inter-class separation term for each sub-dictionary, the learned synthesis dictionary is discriminative and the learned low-rank coding is sparse. Finally, a discriminative classifier in the TD is constructed on the classifier parameter, analysis dictionary and projection matrix, without the calculation of coding coefficients. The effectiveness of the TDDPL approach is verified on SEED and SEED IV datasets.

摘要

脑电图(EEG)信号不易伪装、便于携带且具有非侵入性。它在情绪识别中得到广泛应用。然而,由于个体差异的存在,不同受试者在相同情绪状态下的EEG信号数据分布会存在一定差异。为了获得在对新受试者进行分类时表现良好的模型,传统的情绪识别方法需要收集大量新受试者的标记数据,这通常是不现实的。在本研究中,提出了一种用于跨受试者EEG情绪分类的迁移判别字典对学习(TDDPL)方法。TDDPL方法将来自不同受试者的数据投影到域不变子空间中,并基于最大均值差异(MMD)策略构建迁移字典对学习。在子空间中,TDDPL学习共享的合成字典和分析字典,以构建从源域(SD)到目标域(TD)的判别知识桥梁。通过最小化每个子字典的重构误差和类间分离项,学习到的合成字典具有判别性,学习到的低秩编码是稀疏的。最后,在分类器参数、分析字典和投影矩阵上构建TD中的判别分类器,而无需计算编码系数。在SEED和SEED IV数据集上验证了TDDPL方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8727/9128594/fa7ae1099e28/fpsyg-13-899983-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验