Suppr超能文献

通过模型驱动的代谢模拟分析 Geobacter sulfurreducens 菌株增强的电流产生机制。

Analysis of enhanced current-generating mechanism of Geobacter sulfurreducens strain via model-driven metabolism simulation.

机构信息

State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.

出版信息

PLoS One. 2013 Sep 13;8(9):e73907. doi: 10.1371/journal.pone.0073907. eCollection 2013.

Abstract

Microbial fuel cells (MFCs) are a class of ideal technologies that function via anaerobic respiration of electricigens, which bring current generation and environmental restoration together. An in-depth understanding of microbial metabolism is of great importance in engineering microbes to further improve their respiration. We employed flux balance analysis and selected Fe(iii) as a substitute for the electrode to simulate current-generating metabolism of Geobacter sulfurreducens PCA with a fixed acetate uptake rate. Simulation results indicated the fluxes of reactions directing acetate towards dissimilation to generate electrons increased under the suboptimal growth condition, resulting in an increase in the respiration rate and a decrease in the growth rate. The results revealed the competitive relationship between oxidative respiration and cell growth during the metabolism of microbe current generation. The results helped us quantitatively understand why microbes growing slowly have the potential to make good use of fuel in MFCs. At the same time, slow growth does not necessarily result in speedy respiration. Alternative respirations may exist under the same growth state due to redundant pathways in the metabolic network. The big difference between the maximum and minimum respiration mainly results from the total formate secretion. With iterative flux variability analysis, a relatively ideal model of variant of G. sulfurreducens PCA was reconstructed by deleting several enzymes in the wild model, which could reach simultaneous suboptimal growth and maximum respiration. Under this ideal condition, flux towards extracellular electron transfer rather than for biosynthesis is beneficial for the conversion of organic matter to electricity without large accumulations of biomass and electricigens may maximize utilization of limited fuel. Our simulations will provide an insight into the enhanced current-generating mechanism and identify theoretical range of respiration rates for guiding strain improvement in MFCs.

摘要

微生物燃料电池 (MFC) 是一类理想的技术,通过电活性菌的厌氧呼吸来运行,将电流产生和环境修复结合在一起。深入了解微生物代谢对于工程改造微生物以进一步提高其呼吸作用具有重要意义。我们采用通量平衡分析并选择 Fe(iii) 作为电极的替代品,以模拟具有固定乙酸摄取率的 Geobacter sulfurreducens PCA 的电流产生代谢。模拟结果表明,在亚最优生长条件下,将乙酸导向异化以产生电子的反应通量增加,导致呼吸速率增加和生长速率降低。结果揭示了微生物电流产生代谢过程中氧化呼吸和细胞生长之间的竞争关系。结果帮助我们定量理解为什么生长缓慢的微生物在 MFC 中有潜力更好地利用燃料。同时,缓慢的生长不一定导致快速的呼吸。由于代谢网络中存在冗余途径,在相同的生长状态下可能存在替代呼吸。最大呼吸和最小呼吸之间的巨大差异主要归因于总甲酸盐的分泌。通过迭代通量可变性分析,从野生型中删除几个酶,重建了相对理想的 G. sulfurreducens PCA 变体模型,可以达到同时亚最优生长和最大呼吸。在这种理想条件下,朝向细胞外电子转移的通量而不是用于生物合成的通量有利于将有机物转化为电能,而不会产生大量生物质和电活性菌的积累,并且电活性菌可能最大限度地利用有限的燃料。我们的模拟将深入了解增强的电流产生机制,并确定指导 MFC 中菌株改进的呼吸速率理论范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ce6/3773087/d80040b10cf6/pone.0073907.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验