Suppr超能文献

支持硫还原地杆菌阳极生物膜生长和电活性的电子供体。

Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms.

机构信息

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.

出版信息

Appl Environ Microbiol. 2012 Jan;78(2):437-44. doi: 10.1128/AEM.06782-11. Epub 2011 Nov 18.

Abstract

Geobacter bacteria efficiently oxidize acetate into electricity in bioelectrochemical systems, yet the range of fermentation products that support the growth of anode biofilms and electricity production has not been thoroughly investigated. Here, we show that Geobacter sulfurreducens oxidized formate and lactate with electrodes and Fe(III) as terminal electron acceptors, though with reduced efficiency compared to acetate. The structure of the formate and lactate biofilms increased in roughness, and the substratum coverage decreased, to alleviate the metabolic constraints derived from the assimilation of carbon from the substrates. Low levels of acetate promoted formate carbon assimilation and biofilm growth and increased the system's performance to levels comparable to those with acetate only. Lactate carbon assimilation also limited biofilm growth and led to the partial oxidization of lactate to acetate. However, lactate was fully oxidized in the presence of fumarate, which redirected carbon fluxes into the tricarboxylic acid (TCA) cycle, and by acetate-grown biofilms. These results expand the known ranges of electron donors for Geobacter-driven fuel cells and identify microbial constraints that can be targeted to develop better-performing strains and increase the performance of bioelectrochemical systems.

摘要

在生物电化学系统中,产电细菌 Geobacter 能有效地将乙酸盐氧化为电能,但支持阳极生物膜生长和发电的发酵产物范围尚未得到彻底研究。在这里,我们表明 Geobacter sulfurreducens 可以用电极和 Fe(III)作为末端电子受体氧化甲酸盐和乳酸盐,但与乙酸盐相比效率降低。甲酸盐和乳酸盐生物膜的结构粗糙度增加,基质覆盖率降低,以减轻从基质中同化碳带来的代谢限制。低浓度的乙酸盐促进了甲酸盐的碳同化和生物膜生长,并提高了系统的性能,使其与仅用乙酸盐时的性能相当。乳酸盐的碳同化也限制了生物膜的生长,并导致部分氧化为乙酸盐。然而,在富马酸盐存在的情况下,乳酸盐可以完全氧化,这将碳通量重新导向三羧酸(TCA)循环,并被乙酸盐生长的生物膜氧化。这些结果扩展了已知的 Geobacter 驱动燃料电池的电子供体范围,并确定了可以靶向的微生物限制因素,以开发性能更好的菌株并提高生物电化学系统的性能。

相似文献

1
Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms.
Appl Environ Microbiol. 2012 Jan;78(2):437-44. doi: 10.1128/AEM.06782-11. Epub 2011 Nov 18.
2
Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.
Environ Sci Technol. 2011 Jan 15;45(2):815-20. doi: 10.1021/es102842p. Epub 2010 Dec 15.
3
Metabolic efficiency of Geobacter sulfurreducens growing on anodes with different redox potentials.
Curr Microbiol. 2014 Jun;68(6):763-8. doi: 10.1007/s00284-014-0539-2. Epub 2014 Feb 20.
4
Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.
Appl Environ Microbiol. 2006 Nov;72(11):7345-8. doi: 10.1128/AEM.01444-06. Epub 2006 Aug 25.
5
Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA.
Appl Environ Microbiol. 2011 Dec;77(24):8791-4. doi: 10.1128/AEM.06434-11. Epub 2011 Oct 14.
6
Comparative proteomics of Geobacter sulfurreducens PCA in response to acetate, formate and/or hydrogen as electron donor.
Environ Microbiol. 2021 Jan;23(1):299-315. doi: 10.1111/1462-2920.15311. Epub 2020 Nov 20.
8
Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
Appl Environ Microbiol. 2017 Mar 2;83(6). doi: 10.1128/AEM.03033-16. Print 2017 Mar 15.
9
Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
Environ Microbiol. 2008 Oct;10(10):2505-14. doi: 10.1111/j.1462-2920.2008.01675.x. Epub 2008 Jun 28.
10
NanoSIMS imaging reveals metabolic stratification within current-producing biofilms.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20716-20724. doi: 10.1073/pnas.1912498116. Epub 2019 Sep 23.

引用本文的文献

1
Bacterial Species in Engineered Living Materials: Strategies and Future Directions.
Microb Biotechnol. 2025 May;18(5):e70164. doi: 10.1111/1751-7915.70164.
3
A directional electrode separator improves anodic biofilm current density in a well-mixed single-chamber bioelectrochemical system.
Enzyme Microb Technol. 2024 Oct;180:110502. doi: 10.1016/j.enzmictec.2024.110502. Epub 2024 Aug 22.
5
Synthetic Biology Toolkit for a New Species of Promissory for Electricity Generation in Microbial Fuel Cells.
Microorganisms. 2023 Aug 9;11(8):2044. doi: 10.3390/microorganisms11082044.
6
Geobacter sulfurreducens metabolism at different donor/acceptor ratios.
Microbiologyopen. 2022 Oct;11(5):e1322. doi: 10.1002/mbo3.1322.
7
Electron Flow From the Inner Membrane Towards the Cell Exterior in : Biochemical Characterization of Cytochrome CbcL.
Front Microbiol. 2022 May 10;13:898015. doi: 10.3389/fmicb.2022.898015. eCollection 2022.
8
Electrochemical Microwell Plate to Study Electroactive Microorganisms in Parallel and Real-Time.
Front Bioeng Biotechnol. 2022 Feb 15;9:821734. doi: 10.3389/fbioe.2021.821734. eCollection 2021.
9
Adaptive Synthesis of a Rough Lipopolysaccharide in Geobacter sulfurreducens for Metal Reduction and Detoxification.
Appl Environ Microbiol. 2021 Sep 28;87(20):e0096421. doi: 10.1128/AEM.00964-21. Epub 2021 Aug 4.
10
Current production by non-methanotrophic bacteria enriched from an anaerobic methane-oxidizing microbial community.
Biofilm. 2021 Jun 15;3:100054. doi: 10.1016/j.bioflm.2021.100054. eCollection 2021 Dec.

本文引用的文献

1
Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA.
Appl Environ Microbiol. 2011 Dec;77(24):8791-4. doi: 10.1128/AEM.06434-11. Epub 2011 Oct 14.
2
Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15248-52. doi: 10.1073/pnas.1108616108. Epub 2011 Sep 6.
3
The electric picnic: synergistic requirements for exoelectrogenic microbial communities.
Curr Opin Biotechnol. 2011 Jun;22(3):378-85. doi: 10.1016/j.copbio.2011.03.003. Epub 2011 Mar 26.
5
Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation.
Microb Cell Fact. 2010 Nov 22;9:90. doi: 10.1186/1475-2859-9-90.
6
Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera.
Appl Microbiol Biotechnol. 2010 Sep;88(1):371-80. doi: 10.1007/s00253-010-2757-2. Epub 2010 Jul 15.
7
Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts.
Bioresour Technol. 2011 Jan;102(1):361-6. doi: 10.1016/j.biortech.2010.05.017. Epub 2010 May 31.
8
A kinetic perspective on extracellular electron transfer by anode-respiring bacteria.
FEMS Microbiol Rev. 2010 Jan;34(1):3-17. doi: 10.1111/j.1574-6976.2009.00191.x.
9
A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.
Bioresour Technol. 2010 Mar;101(6):1533-43. doi: 10.1016/j.biortech.2009.10.017. Epub 2009 Nov 4.
10
Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell.
Appl Environ Microbiol. 2009 Dec;75(24):7579-87. doi: 10.1128/AEM.01760-09. Epub 2009 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验