Suppr超能文献

预测蛋白质-蛋白质界面的亲和力和特异性增强突变。

Predicting affinity- and specificity-enhancing mutations at protein-protein interfaces.

机构信息

*Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Biochem Soc Trans. 2013 Oct;41(5):1166-9. doi: 10.1042/BST20130121.

Abstract

Manipulations of PPIs (protein-protein interactions) are important for many biological applications such as synthetic biology and drug design. Combinatorial methods have been traditionally used for such manipulations, failing, however, to explain the effects achieved. We developed a computational method for prediction of changes in free energy of binding due to mutation that bring about deeper understanding of the molecular forces underlying binding interactions. Our method could be used for computational scanning of binding interfaces and subsequent analysis of the interfacial sequence optimality. The computational method was validated in two biological systems. Computational saturated mutagenesis of a high-affinity complex between an enzyme AChE (acetylcholinesterase) and a snake toxin Fas (fasciculin) revealed the optimal nature of this interface with only a few predicted affinity-enhancing mutations. Binding measurements confirmed high optimality of this interface and identified a few mutations that could further improve interaction fitness. Computational interface scanning of a medium-affinity complex between TIMP-2 (tissue inhibitor of metalloproteinases-2) and MMP (matrix metalloproteinase) 14 revealed a non-optimal nature of the binding interface with multiple mutations predicted to stabilize the complex. Experimental results corroborated our computational predictions, identifying a large number of mutations that improve the binding affinity for this interaction and some mutations that enhance binding specificity. Overall, our computational protocol greatly facilitates the discovery of affinity- and specificity-enhancing mutations and thus could be applied for design of potent and highly specific inhibitors of any PPI.

摘要

蛋白质-蛋白质相互作用(PPIs)的操纵对于许多生物应用非常重要,如合成生物学和药物设计。传统上使用组合方法进行此类操作,但未能解释所达到的效果。我们开发了一种用于预测由于突变导致结合自由能变化的计算方法,从而更深入地了解了结合相互作用的分子力。我们的方法可用于计算结合界面的扫描,然后分析界面序列的最优性。该计算方法在两个生物系统中得到了验证。对酶 AChE(乙酰胆碱酯酶)和蛇毒素 Fas(fasciulin)之间高亲和力复合物的计算饱和诱变显示,该界面具有最佳性质,只有少数预测的亲和力增强突变。结合测量证实了该界面的高度最优性,并确定了一些可以进一步提高相互作用适应性的突变。对 TIMP-2(组织金属蛋白酶抑制剂-2)和 MMP(基质金属蛋白酶)14 之间的中等亲和力复合物的计算界面扫描显示,结合界面的性质不理想,预测有多个突变可以稳定复合物。实验结果证实了我们的计算预测,确定了大量可以提高该相互作用结合亲和力的突变,以及一些可以增强结合特异性的突变。总的来说,我们的计算方案极大地促进了发现增强亲和力和特异性的突变,因此可以应用于设计任何 PPI 的有效且高度特异性的抑制剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验