Suppr超能文献

用进化对抗进化:具有广泛宿主范围的质粒依赖性噬菌体可阻止抗生素耐药性的传播。

Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance.

机构信息

Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä Jyväskylä, Finland.

出版信息

Evol Appl. 2013 Sep;6(6):925-32. doi: 10.1111/eva.12076. Epub 2013 Jun 10.

Abstract

The emergence of pathogenic bacteria resistant to multiple antibiotics is a serious worldwide public health concern. Whenever antibiotics are applied, the genes encoding for antibiotic resistance are selected for within bacterial populations. This has led to the prevalence of conjugative plasmids that carry resistance genes and can transfer themselves between diverse bacterial groups. In this study, we investigated whether it is feasible to attempt to prevent the spread of antibiotic resistances with a lytic bacteriophage, which can replicate in a wide range of gram-negative bacteria harbouring conjugative drug resistance-conferring plasmids. The counter-selection against the plasmid was shown to be effective, reducing the frequency of multidrug-resistant bacteria that formed via horizontal transfer by several orders of magnitude. This was true also in the presence of an antibiotic against which the plasmid provided resistance. Majority of the multiresistant bacteria subjected to phage selection also lost their conjugation capability. Overall this study suggests that, while we are obligated to maintain the selection for the spread of the drug resistances, the 'fight evolution with evolution' approach could help us even out the outcome to our favour.

摘要

耐药性病原菌的出现是全世界公共卫生面临的一个严重问题。每当使用抗生素时,细菌种群中就会选择出编码抗生素耐药性的基因。这导致了携带耐药基因的可转移质粒的流行,这些质粒可以在不同的细菌群体之间转移。在这项研究中,我们探讨了是否可以尝试使用溶菌噬菌体来阻止抗生素耐药性的传播,该噬菌体可以在携带可转移药物耐药性赋予质粒的广泛革兰氏阴性菌中复制。对质粒的反选择被证明是有效的,将通过水平转移形成的多药耐药菌的频率降低了几个数量级。即使存在对抗生素具有抗性的质粒,也是如此。大多数经过噬菌体选择的多耐药细菌也失去了它们的接合能力。总的来说,这项研究表明,虽然我们有义务维持药物耐药性的传播选择,但“用进化对抗进化”的方法可以帮助我们使结果对我们有利。

相似文献

2
Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids.
Biol Lett. 2011 Dec 23;7(6):902-5. doi: 10.1098/rsbl.2011.0384. Epub 2011 Jun 1.
3
Scoping the effectiveness and evolutionary obstacles in using plasmid-dependent phages to fight antibiotic resistance.
Future Microbiol. 2016 Aug;11:999-1009. doi: 10.2217/fmb-2016-0038. Epub 2016 Aug 9.
4
Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.
mBio. 2017 Jan 17;8(1):e02115-16. doi: 10.1128/mBio.02115-16.
5
Inhibiting conjugation as a tool in the fight against antibiotic resistance.
Drug Dev Res. 2019 Feb;80(1):19-23. doi: 10.1002/ddr.21457. Epub 2018 Oct 21.
6
Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.
Postepy Hig Med Dosw (Online). 2016 Jul 7;70(0):803-10. doi: 10.5604/17322693.1209214.
7
Black Queen Evolution and Trophic Interactions Determine Plasmid Survival after the Disruption of the Conjugation Network.
mSystems. 2018 Oct 2;3(5). doi: 10.1128/mSystems.00104-18. eCollection 2018 Sep-Oct.
8
Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages.
Microorganisms. 2021 Jan 29;9(2):280. doi: 10.3390/microorganisms9020280.
9
Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance.
Front Mol Biosci. 2020 Aug 12;7:201. doi: 10.3389/fmolb.2020.00201. eCollection 2020.
10
Mobile Compensatory Mutations Promote Plasmid Survival.
mSystems. 2019 Jan 15;4(1). doi: 10.1128/mSystems.00186-18. eCollection 2019 Jan-Feb.

引用本文的文献

1
The hospital sink drain microbiome as a melting pot for AMR transmission to nosocomial pathogens.
NPJ Antimicrob Resist. 2025 Jul 29;3(1):68. doi: 10.1038/s44259-025-00137-9.
2
Phage-Antibiotic Combinations for Pseudomonas: Successes in the Clinic and In Vitro Tenuously Connected.
Microb Biotechnol. 2025 Jul;18(7):e70193. doi: 10.1111/1751-7915.70193.
3
Phage therapy for Klebsiella pneumoniae: Understanding bacteria-phage interactions for therapeutic innovations.
PLoS Pathog. 2025 Apr 8;21(4):e1012971. doi: 10.1371/journal.ppat.1012971. eCollection 2025 Apr.
4
Interactions and evolutionary relationships among bacterial mobile genetic elements.
Nat Rev Microbiol. 2025 Mar 11. doi: 10.1038/s41579-025-01157-y.
6
Rediscovering plasmid-dependent phages.
Nat Rev Microbiol. 2024 Nov;22(11):670. doi: 10.1038/s41579-024-01102-5.
7
Phage predation accelerates the spread of plasmid-encoded antibiotic resistance.
Nat Commun. 2024 Jun 26;15(1):5397. doi: 10.1038/s41467-024-49840-7.
8
Diverse and abundant phages exploit conjugative plasmids.
Nat Commun. 2024 Apr 12;15(1):3197. doi: 10.1038/s41467-024-47416-z.
9
Bacteriophage-Host Interactions and the Therapeutic Potential of Bacteriophages.
Viruses. 2024 Mar 20;16(3):478. doi: 10.3390/v16030478.
10
New Approaches to Tackling Intractable Issues in Infectious Disease.
Microorganisms. 2024 Feb 20;12(3):421. doi: 10.3390/microorganisms12030421.

本文引用的文献

1
Evolutionary dynamics of separate and combined exposure of Pseudomonas fluorescens SBW25 to antibiotics and bacteriophage.
Evol Appl. 2012 Sep;5(6):583-92. doi: 10.1111/j.1752-4571.2012.00248.x. Epub 2012 Feb 23.
2
Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms.
Evol Appl. 2012 Sep;5(6):575-82. doi: 10.1111/j.1752-4571.2011.00236.x. Epub 2012 Jan 13.
3
Phage therapy--history from Twort and d'Herelle through Soviet experience to current approaches.
Adv Virus Res. 2012;83:3-40. doi: 10.1016/B978-0-12-394438-2.00001-3.
4
5
Evolution of antibiotic resistance at non-lethal drug concentrations.
Drug Resist Updat. 2012 Jun;15(3):162-72. doi: 10.1016/j.drup.2012.03.005. Epub 2012 Apr 18.
6
Tackling antibiotic resistance.
Nat Rev Microbiol. 2011 Nov 2;9(12):894-6. doi: 10.1038/nrmicro2693.
7
The next generation of bacteriophage therapy.
Curr Opin Microbiol. 2011 Oct;14(5):524-31. doi: 10.1016/j.mib.2011.07.028. Epub 2011 Aug 23.
8
The urgent need for new antibacterial agents.
J Antimicrob Chemother. 2011 Sep;66(9):1939-40. doi: 10.1093/jac/dkr261. Epub 2011 Jun 23.
9
Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.
PLoS One. 2011;6(5):e19991. doi: 10.1371/journal.pone.0019991. Epub 2011 May 26.
10
Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids.
Biol Lett. 2011 Dec 23;7(6):902-5. doi: 10.1098/rsbl.2011.0384. Epub 2011 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验