Bureau International des Poids et Mesures (BIPM), Pavillon de Breteuil, F-92312 Sèvres Cedex, France.
Appl Spectrosc. 2013 Oct;67(10):1171-8. doi: 10.1366/13-07030.
A novel method for determining the accuracy of laboratory-based measurements of nitrogen dioxide (NO2) and nitric acid (HNO3) mole fractions using Fourier transform infrared (FT-IR) spectroscopy 1 cm(-1) resolution instruments calibrated with synthetic spectra has been developed. The traceability of these measurement results is to the reference line strength data contained within the high-resolution transmission molecular absorption (HITRAN) database. Incorporating a proper estimate of the uncertainty of this data into the measurement results will ensure that the SI traceable values are encompassed within the uncertainty of the measurement results. The major contributors to the uncertainties of the results are, in descending order of importance, the uncertainty in the line strength values (HITRAN 2004), the uncertainty attributed to the generation of reference spectra (including knowledge of the optical path length of the FT-IR gas cell), and temperature measurements of the gas. The stability of the FT-IR instrument itself is only a minor contributor to the overall uncertainty of the measurements. FT-IR measurements of NO2 mole fractions at nominal values of 10 μmol mol(-1) calibrated with synthetic spectra lead to standard uncertainties of 0.34 μmol mol(-1) (3.4% relative). In contrast, calibration of the FT-IR instrument with SI traceable gas standards generated by a dynamic weighing system resulted in measurements results with standard uncertainties of 0.04 μmol mol(-1) (0.4% relative). When comparing the consistency of measurement results based on the synthetic calibration method against those obtained by calibrations with SI traceable gas standards, the existence of a potential bias of ~5% was observed, although this was within the stated uncertainties of the results. The FT-IR measurements of HNO3 mole fractions at nominal values of 200 nmol mol(-1) calibrated with synthetic spectra resulted in values with standard uncertainties of 23 nmol mol(-1) (11% relative) with the dominating uncertainty in this case arising from the stabilization of the mole fraction value within the FT-IR gas cell.
一种用于确定使用傅里叶变换红外(FT-IR)光谱仪(1cm-1 分辨率)测量二氧化氮(NO2)和硝酸(HNO3)分子分数的实验室测量精度的新方法已经开发出来。这些测量结果的可追溯性是指参考线强数据,该数据包含在高分辨率传输分子吸收(HITRAN)数据库中。将对该数据不确定性的适当估计纳入测量结果中,将确保 SI 可追溯值包含在测量结果的不确定度内。结果不确定性的主要贡献者按重要性降序排列依次为:线强值(HITRAN 2004)的不确定性、生成参考光谱的不确定性(包括对 FT-IR 气体池光程的了解)以及气体温度测量的不确定性。FT-IR 仪器本身的稳定性只是测量总不确定度的次要因素。使用合成光谱校准的标称值为 10μmolmol-1 的 NO2 分子分数的 FT-IR 测量结果导致标准不确定度为 0.34μmolmol-1(相对值为 3.4%)。相比之下,使用通过动态称重系统生成的 SI 可追溯气体标准校准 FT-IR 仪器导致测量结果的标准不确定度为 0.04μmolmol-1(相对值为 0.4%)。在比较基于合成校准方法的测量结果的一致性与使用 SI 可追溯气体标准进行校准的结果的一致性时,观察到存在约 5%的潜在偏差,尽管这在结果的规定不确定度内。使用合成光谱校准的标称值为 200nmolmol-1 的 HNO3 分子分数的 FT-IR 测量结果导致标准不确定度为 23nmolmol-1(相对值为 11%),在这种情况下,不确定性的主要来源是 FT-IR 气体池内的分子分数值的稳定。