Bureau International des Poids et Mesures (BIPM) , Pavillon de Breteuil, F-92312 Sèvres Cedex, France.
University of Wollongong , Wollongong, New South Wales 2500, Australia.
Anal Chem. 2017 Mar 21;89(6):3648-3655. doi: 10.1021/acs.analchem.6b05063. Epub 2017 Feb 27.
This paper describes calibration strategies in laboratory conditions that can be applied to ensure accurate measurements of the isotopic composition of the CO in ultradry air, expressed as δC and δO on the VPDB scale, with either FT-IR (in this case a Vertex 70 V (Bruker)) or an isotope ratio infrared spectrometer (IRIS) (in this case a Delta Ray (Thermo Fisher Scientific)). In the case of FT-IR a novel methodology using only two standards of CO in air with different mole fractions but identical isotopic composition was demonstrated to be highly accurate for measurements of δC and δO with standard uncertainties of 0.09‰ and 1.03‰, respectively, at a nominal CO mole fraction of 400 μmol mol in air. In the case of the IRIS system, we demonstrate that the use of two standards of CO in air of known but differing δC and δO isotopic composition allows standard uncertainties of 0.18‰ and 0.48‰ to be achieved for δC and δO measurements, respectively. The calibration strategies were validated using a set of five traceable primary reference gas mixtures. These standards, produced with whole air or synthetic air covered the mole fraction range of (378-420) μmol mol and were prepared and/or value assigned either by the National Institute of Standards and Technology (NIST) or the National Physical Laboratory (NPL). The standards were prepared using pure CO obtained from different sources, namely, combustion; Northern Continental and Southern Oceanic Air and a gas well source, with δC values ranging between -35‰ and -1‰. The isotopic composition of all standards was value assigned at the Max Planck Institute for Biogeochemistry Jena (MPI-Jena).
本文描述了在实验室条件下进行校准的策略,这些策略可确保准确测量超干燥空气中 CO 的同位素组成,以 VPDB 标度表示为 δC 和 δO,使用傅立叶变换红外光谱仪 (FT-IR)(在此情况下为 Vertex 70 V(Bruker))或同位素比红外光谱仪 (IRIS)(在此情况下为 Delta Ray(Thermo Fisher Scientific))均可。对于 FT-IR,我们证明了一种新颖的方法,仅使用两种具有不同摩尔分数但相同同位素组成的空气中 CO 标准,即可实现对 δC 和 δO 的高精度测量,其标准不确定度分别为 0.09‰和 1.03‰,在空气中 CO 的标称摩尔分数为 400 μmol/mol 的情况下。对于 IRIS 系统,我们证明了使用两种具有已知但不同 δC 和 δO 同位素组成的空气中 CO 标准,可以实现 δC 和 δO 测量的标准不确定度分别为 0.18‰和 0.48‰。校准策略通过一组五个可溯源的主要参考气体混合物进行了验证。这些标准是使用全空气或合成空气生产的,涵盖了(378-420)μmol/mol 的摩尔分数范围,并且是由美国国家标准与技术研究院 (NIST) 或英国国家物理实验室 (NPL) 制备和/或赋值的。这些标准是使用来自不同来源的纯 CO 制备的,这些来源分别是燃烧、北方大陆和南大洋空气以及天然气井,δC 值范围在-35‰至-1‰之间。所有标准的同位素组成均由马克斯·普朗克生物地球化学研究所 Jena(MPI-Jena)赋值。