Institute of Particle Technology, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany.
Institute of Applied Mechanics, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany.
Environ Sci Technol. 2024 Sep 10;58(36):16087-16099. doi: 10.1021/acs.est.4c04894. Epub 2024 Aug 29.
This study aims to fine-tune the plasma composition with a particular emphasis on reactive nitrogen species (RNS) including nitrogen dioxide (NO), dinitrogen pentoxide (NO), and nitrous oxide (NO), produced by a self-constructed cylindrical dielectric barrier discharge (CDBD). We demonstrated the effective manipulation of the plasma chemical profile by optimizing electrical properties, including the applied voltage and frequency, and by adjusting the nitrogen and oxygen ratios in the gas mixture. Additionally, quantification of these active species was achieved using Fourier transform infrared spectroscopy. The study further extends to exploring the aerosol polymerization of acrylamide (AM) into polyacrylamide (PAM), serving as a model reaction to evaluate the reactivity of different plasma-generated species, highlighting the significant role of NO in achieving high polymerization yields. Complementing our experimental data, molecular dynamics (MD) simulations, based on the ReaxFF reactive force field potential, explored the interactions between reactive oxygen species, specifically hydroxyl radicals (OH) and hydrogen peroxide (HO), with water molecules. Understanding these interactions, combined with the optimization of plasma chemistry, is crucial for enhancing the effectiveness of DBD plasma in environmental applications like air purification and water treatment.
本研究旨在微调等离子体组成,特别关注通过自行构建的圆柱形介质阻挡放电(CDBD)产生的活性氮物种(RNS),包括二氧化氮(NO )、五氧化二氮(NO )和一氧化二氮(NO )。我们通过优化电特性(包括施加电压和频率)以及调整气体混合物中的氮和氧比例,展示了对等离子体化学特性的有效控制。此外,还使用傅里叶变换红外光谱法对这些活性物质进行了定量。本研究进一步扩展到探索丙烯酰胺(AM)的气溶胶聚合为聚丙烯酰胺(PAM),作为评估不同等离子体产生物种反应性的模型反应,突出了 NO 在实现高聚合产率方面的重要作用。补充我们的实验数据,基于 ReaxFF 反应力场势的分子动力学(MD)模拟,探索了活性氧物种,特别是羟基自由基(OH)和过氧化氢(HO)与水分子之间的相互作用。理解这些相互作用,结合等离子体化学的优化,对于提高 DBD 等离子体在空气净化和水处理等环境应用中的有效性至关重要。