Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia 23668, USA.
Nature. 2013 Sep 26;501(7468):501-5. doi: 10.1038/nature12473.
The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.
早期地球的热量传输和岩石圈动力学目前由板块构造和垂直构造模型解释,但这些模型不能提供与地质记录一致的全球综合解释。在这里,我们使用数值模拟并与地质记录进行比较,探讨了一种以火山作用为主导地表热传输的热管模型。这些模拟表明,频繁的火山喷发将地表物质向下输送,导致形成了一个寒冷而厚的岩石圈。随着时间的推移,热源的减少导致了突然向板块构造的转变。与模型预测一致的是,地质记录显示出快速的火山再造、收缩变形、整个岩石圈的低热梯度以及在板块构造开始后热管火山活动的迅速减少。因此,热管地球模型提供了一个连贯的地球动力学框架,可以在板块构造开始之前探索我们星球的演化。