Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, Oxfordshire, United Kingdom.
J Am Chem Soc. 2013 Oct 9;135(40):15026-32. doi: 10.1021/ja4042675. Epub 2013 Sep 26.
The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H(+)/H2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H(+) reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction.
对于太阳能燃料生产而言,最有效的催化剂应该在接近可逆电位的条件下工作,但又要有利于生成燃料的方向。对含镍的一氧化碳脱氢酶和[NiFeSe]-氢化酶的蛋白膜电化学研究表明,电极的电子状态强烈偏向于 CO2/CO 和 H(+)/H2 相互转化的电催化方向。这些酶附着在石墨电极上时,对氧化和还原都表现出很高的活性,但当它们分别附着在由 CdS 和 TiO2 纳米粒子构成的 n 型半导体电极上时,偏向于 CO2 或 H(+)还原的趋势就会明显增强。如果附着在半导体电极上的可逆电催化剂在电催化电流在氧化和还原之间切换的相同窄电位范围内(<0.25 V)从半导体行为转变为金属样行为,那么就会出现这种催化整流效应。