Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.
J Am Chem Soc. 2012 Oct 17;134(41):17104-16. doi: 10.1021/ja306162g. Epub 2012 Oct 3.
Tight control of charge transport from a visible light sensitizer to a metal oxide nanoparticle catalyst for water oxidation is a critical requirement for developing efficient artificial photosynthetic systems. By utilizing covalently anchored molecular wires for hole transport from sensitizer to the oxide surface, the challenge of high rate and unidirectionality of the charge flow can be addressed. Functionalized hole conducting molecular wires of type p-oligo(phenylenevinylene) (3 aryl units, abbreviated PV3) with various anchoring groups for the covalent attachment to Co(3)O(4) catalyst nanoparticles were synthesized and two alternative methods for attachment to the oxide nanoparticle surface introduced. Covalent anchoring of intact PV3 molecules on Co(3)O(4) nanoparticles (and on SiO(2) nanoparticles for control purposes) was established by FT-Raman, FT-IR, and optical spectroscopy including observation, in some cases, of the vibrational signature of the anchored functionality. Direct monitoring of the kinetics of hole transfer from a visible light sensitizer in aqueous solution (Ru(bpy)(3) (and derivatives) light absorber, Co(NH(3))(5)Cl acceptor) to wire molecules on inert SiO(2)(12 nm) particles by nanosecond laser absorption spectroscopy revealed efficient, encounter controlled rates. For wire molecules anchored on Co(3)O(4) nanoparticles, the recovery of the reduced sensitizer at 470 nm indicated similarly efficient hole transfer to the attached PV3, yet no transient hole signal was detected at 600 nm. This implies hole injection from the anchored wire molecule into the Co(3)O(4) particle within 1 μs or shorter, indicating efficient charge transport from the visible light sensitizer to the oxide catalyst particle.
从可见光敏化剂到金属氧化物纳米颗粒催化剂有效传输电荷是开发高效人工光合作用系统的关键要求。通过利用共价键固定的分子导线将空穴从敏化剂传输到氧化物表面,可以解决电荷流动的高速率和单向性的挑战。合成了各种具有不同锚定基团的功能化空穴传输分子导线型 p-聚(苯乙炔)(3 个芳基单元,缩写为 PV3),用于与 Co(3)O(4)催化剂纳米颗粒进行共价键合,并引入了两种替代的方法将其连接到氧化物纳米颗粒表面。通过 FT-Raman、FT-IR 和包括观察(在某些情况下观察到锚定官能团的振动特征)在内的光谱学方法,确定了完整的 PV3 分子在 Co(3)O(4)纳米颗粒(以及为了控制目的在 SiO(2)纳米颗粒上)上的共价键合。通过纳秒激光吸收光谱法直接监测水溶液中可见光敏化剂(Ru(bpy)(3)(和衍生物)光吸收剂,Co(NH(3))(5)Cl 受体)到惰性 SiO(2)(12 nm)颗粒上的导线分子的空穴转移动力学,发现其具有高效的、遭遇控制的速率。对于锚定在 Co(3)O(4)纳米颗粒上的导线分子,在 470nm 处恢复还原的敏化剂表明同样高效地将空穴转移到附着的 PV3,但在 600nm 处未检测到瞬时光穴信号。这意味着在 1μs 或更短时间内,空穴从锚定的导线分子注入到 Co(3)O(4)颗粒中,表明从可见光敏化剂到氧化物催化剂颗粒的有效电荷传输。