Wellcome Trust Sanger Institute, Cambridge, UK.
Nat Protoc. 2013 Oct;8(10):2061-78. doi: 10.1038/nprot.2013.126. Epub 2013 Sep 26.
I report here a detailed protocol for seamless genome editing using the piggyBac transposon in human pluripotent stem cells (hPSCs). Recent advances in custom endonucleases have enabled us to routinely perform genome editing in hPSCs. Conventional approaches use the Cre/loxP system that leaves behind residual sequences in the targeted genome. I used the piggyBac transposon to seamlessly remove a drug selection cassette and demonstrated safe genetic correction of a mutation causing α-1 antitrypsin deficiency in patient-derived hPSCs. An alternative approach to using the piggyBac transposon to correct mutations involves using single-stranded oligonucleotides, which is a faster process to complete. However, this experimental procedure is rather complicated and it may be hard to achieve homozygous modifications. In contrast, using the piggyBac transposon with drug selection-based enrichment of genetic modifications, as described here, is simple and can yield multiple correctly targeted clones, including homozygotes. Although two rounds of genetic manipulation are required to achieve homozygote modifications, the entire process takes ∼3 months to complete.
我在此报告了一种详细的方案,即在人多能干细胞(hPSC)中使用 piggyBac 转座子进行无缝基因组编辑。最近,定制内切酶的进展使我们能够在 hPSC 中常规地进行基因组编辑。传统的方法使用 Cre/loxP 系统,该系统会在靶基因组中留下残留序列。我使用 piggyBac 转座子无缝地去除了药物选择盒,并在源自患者的 hPSC 中安全地纠正了导致 α-1 抗胰蛋白酶缺陷的突变。使用 piggyBac 转座子纠正突变的另一种方法涉及使用单链寡核苷酸,这是一个更快的完成过程。然而,这个实验过程相当复杂,可能很难实现纯合修饰。相比之下,如这里所述,使用基于药物选择的遗传修饰富集的 piggyBac 转座子既简单又可以产生多个正确靶向的克隆,包括纯合子。虽然需要进行两轮遗传操作才能实现纯合修饰,但整个过程需要大约 3 个月才能完成。