Suppr超能文献

优化治疗后的乳腺癌患者复发残留风险的量化。

Quantification of residual risk of relapse in breast cancer patients optimally treated.

机构信息

INSERM Unit U981 and Breast Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France.

出版信息

Breast. 2013 Aug;22 Suppl 2:S92-5. doi: 10.1016/j.breast.2013.07.017.

Abstract

Despite remarkable improvements in breast cancer survival in the last decades, a proportion of patients still relapse after treatment for early disease. Different prognostic parameters may permit to roughly quantify the residual risk of relapse after (neo)adjuvant therapy. They include: tumor stage and classical molecular features at baseline, newly proposed prognosticators (such as tumor-infiltrating lymphocytes and integrated genomic tools) and the evaluation of tumor response after primary systemic therapy. However, the performance of these factors is still suboptimal and should be improved. Further research aimed to discover new possible prognostic factors in patients who received optimal systemic therapy is needed. Moreover, to exploit at the best the potential of each of these parameters, they should be integrated into algorithms to guide treatment decisions and to select those patients who may deserve the inclusion in clinical trials.

摘要

尽管在过去几十年中,乳腺癌的生存率有了显著提高,但仍有一部分患者在早期疾病治疗后复发。不同的预后参数可以大致量化新辅助治疗后(新)辅助治疗后的残留复发风险。它们包括:基线时的肿瘤分期和经典的分子特征、新提出的预后标志物(如肿瘤浸润淋巴细胞和综合基因组工具)以及原发性全身治疗后肿瘤反应的评估。然而,这些因素的性能仍然不理想,需要加以改进。需要进一步研究以发现接受最佳全身治疗的患者中可能存在的新的预后因素。此外,为了充分利用这些参数中的每一个参数的潜力,应该将它们整合到算法中,以指导治疗决策,并选择那些可能需要纳入临床试验的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验