Staiger C J, Cande W Z
Department of Molecular and Cell Biology, University of California, Berkeley 94720.
Dev Biol. 1990 Mar;138(1):231-42. doi: 10.1016/0012-1606(90)90193-m.
Microsporogenesis in Zea mays, the meiotic reduction of diploid sporocytes to haploid microspores, proceeds through a well-defined developmental sequence. The ability to generate mutants that affect the process makes this an ideal system for elucidating the role of the cytoskeleton during plant development. We have used immunofluorescence microscopy to compare microtubule distribution in wild-type and mutant microsporocytes. During normal meiosis the distribution of microtubules follows a specific temporal and spatial pattern that reflects the polar nature of microspore formation. Perinuclear microtubule staining increases and the nucleus elongates in the future spindle axis during late prophase I. Metaphase I spindles with highly focused poles align along the long axis of the anther locule. Cytokinesis occurs perpendicular to the spindle axis. The second division axis shifts 90 degrees with respect to the first division plane, thereby yielding an isobilateral tetrad of microspores. Microtubule distribution patterns during meiosis suggest that a nuclear envelope-associated microtubule organizing center (MTOC) controls the organization of cytoplasmic microtubules and contributes to spindle formation. The meiotic mutant dv is defective in the transition from a prophase microtubule array to a metaphase spindle. Instead of converging to form focused poles, the metaphase spindle poles remain diffuse as in prometaphase. This defect correlates with several abnormalities in subsequent developmental events including the formation of multinucleate daughter cells, multiple microspindles during meiosis II, multiple phragmoplasts, polyads of microspores, and cytoplasmic microtubule foci. These results suggest that dv is a mutation that affects MTOC organization.
玉米的小孢子发生过程,即二倍体造孢细胞减数分裂形成单倍体小孢子的过程,是按照明确的发育顺序进行的。能够产生影响这一过程的突变体,使得玉米成为阐明植物发育过程中细胞骨架作用的理想系统。我们利用免疫荧光显微镜比较了野生型和突变型造孢细胞中微管的分布情况。在正常减数分裂过程中,微管的分布遵循特定的时空模式,这反映了小孢子形成的极性本质。在减数第一次分裂前期后期,核周微管染色增强,细胞核在未来纺锤体轴方向伸长。具有高度聚焦极的减数第一次分裂纺锤体沿花药室的长轴排列。胞质分裂垂直于纺锤体轴发生。第二次分裂轴相对于第一次分裂平面旋转90度,从而产生一个两侧对称的小孢子四分体。减数分裂过程中的微管分布模式表明,一个与核膜相关的微管组织中心(MTOC)控制着细胞质微管的组织,并有助于纺锤体的形成。减数分裂突变体dv在从前期微管阵列向中期纺锤体的转变过程中存在缺陷。中期纺锤体的极没有汇聚形成聚焦的极,而是像在有丝分裂前期一样保持弥散状态。这一缺陷与随后发育事件中的几个异常现象相关,包括多核子细胞的形成、减数第二次分裂期间的多个微纺锤体、多个成膜体、小孢子多联体以及细胞质微管聚集。这些结果表明,dv是一个影响MTOC组织的突变。