Nanomaterials and System Lab, Department of Mechanical Engineering, Jeju National University, Jeju 690-456, Republic of Korea.
Colloids Surf B Biointerfaces. 2013 Dec 1;112:521-4. doi: 10.1016/j.colsurfb.2013.08.026. Epub 2013 Aug 28.
Inorganic nanostructures are highly recognized for their potential use in the development of new functional materials for biomedical applications. In this study, we investigated the antibacterial efficiency of molybdenum trioxide (MoO3) nanoplates against four types of pathogenic bacteria. MoO3 nanoplates are synthesized by a simple wet chemical approach. X-ray diffraction and FT-IR analysis showed the presence of an orthorhombic phase of MoO3 nanoplates. Field emission scanning electron microscope studies confirmed the formation of plate-like structures of MoO3. The minimum inhibitory concentration (MIC) of MoO3 nanoplates against pathogenic bacteria was evaluated using a microdilution method. MICs such as 8μg/mL (against Escherichia coli and Salmonella typhimurium), 16μg/mL (against Enterococcus faecalis), and 8μg/mL (against Bacillus subtilis) show that MoO3 nanoplates have predominant antibacterial activity compared to the standard antibiotic, kanamycin. Evaluation of bacterial enzymatic (β-d-galactosidase) activity in the hydrolysis of o-nitrophenol and β-d-galactopyranoside suggested the disruption of the bacterial cell wall mechanism responsible for bacterial toxicity.
无机纳米结构因其在生物医学应用中开发新型功能材料的潜力而受到高度关注。在这项研究中,我们研究了三氧化钼 (MoO3) 纳米板对四种致病菌的抗菌效率。MoO3 纳米板通过简单的湿化学方法合成。X 射线衍射和 FT-IR 分析表明存在 MoO3 纳米板的正交相。场发射扫描电子显微镜研究证实了 MoO3 板状结构的形成。使用微量稀释法评估 MoO3 纳米板对致病菌的最小抑菌浓度 (MIC)。MIC 如 8μg/mL(对大肠杆菌和鼠伤寒沙门氏菌)、16μg/mL(对粪肠球菌)和 8μg/mL(对枯草芽孢杆菌)表明,与标准抗生素卡那霉素相比,MoO3 纳米板具有显著的抗菌活性。对细菌酶(β-半乳糖苷酶)活性的评估表明,o-硝基苯酚和β-半乳糖吡喃糖苷的水解破坏了细胞壁机制,导致细菌毒性。