1] Mechanical Engineering Department, Northwestern University, Evanston, IL 60208 [2].
Sci Rep. 2013 Sep 30;3:2803. doi: 10.1038/srep02803.
Non-propagating evanescent fields play an important role in the development of nano-photonic devices. While detecting the evanescent fields in far-field can be accomplished by coupling it to the propagating waves, in practice they are measured in the presence of unwanted propagating background components. It leads to a poor signal-to-noise ratio and thus to errors in quantitative analysis of the local evanescent fields. Here we report on a plasmonic near-field scanning optical microscopy (p-NSOM) technique that incorporates a nanofocusing probe for adiabatic focusing of propagating surface plasmon polaritons at the probe apex, and for enhanced coupling of evanescent waves to the far-field. In addition, a harmonic demodulation technique is employed to suppress the contribution of the background. Our experimental results show strong evidence of background free near-field imaging using the new p-NSOM technique. Furthermore, we present measurements of surface plasmon cavity modes, and quantify their contributing sources using an analytical model.
非传播消逝场在纳米光子学器件的发展中起着重要作用。虽然可以通过将消逝场耦合到传播波中来实现对远场消逝场的检测,但在实际中,它们是在存在不需要的传播背景分量的情况下进行测量的。这导致信噪比差,从而导致对局部消逝场的定量分析出现误差。在这里,我们报告了一种等离子体近场扫描光学显微镜(p-NSOM)技术,该技术结合了纳米聚焦探头,用于在探头顶点处对传播的表面等离激元极化激元进行绝热聚焦,并增强了消逝波与远场的耦合。此外,还采用了谐波解调技术来抑制背景的贡献。我们的实验结果表明,使用新的 p-NSOM 技术可以进行无背景的近场成像。此外,我们还展示了表面等离激元腔模的测量结果,并使用分析模型对其贡献源进行了量化。