University of Washington Department of Electrical Engineering, 185 Stevens Way, Paul Allen Center - Room AE100R, Campus Box 352500, Seattle, Washington 98195-2500, USA.
Nat Nanotechnol. 2013 Oct;8(10):755-62. doi: 10.1038/nnano.2013.189. Epub 2013 Sep 29.
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
生物有机体利用复杂的分子网络来感知环境并调节内部状态。开发具有类似功能的合成系统可以带来智能治疗或基于自组织的制造方法等应用。为了实现这一目标,需要对分子控制电路进行工程设计,以实现集成的传感、计算和驱动。在这里,我们报告了一种基于 DNA 的技术,用于实现此类控制器的计算核心。我们使用化学反应网络的形式作为“编程语言”,并且我们的 DNA 架构原则上可以实现任何可以用数学表示的行为。与逻辑电路不同,我们的表述自然允许对生物和化学输入的复杂模拟信号进行处理。控制器组件可以从生物合成(质粒)DNA 中推导出来,这减少了与化学合成 DNA 相关的错误。我们实现了几种构建块反应类型,然后将它们组合成一个网络,在分子水平上实现了分布式控制系统中用于实现多个代理之间共识的算法。