The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China.
Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
Small. 2019 Dec;15(49):e1903489. doi: 10.1002/smll.201903489. Epub 2019 Oct 29.
The prospect of programming molecular computing systems to realize complex autonomous tasks has advanced the design of synthetic biochemical logic circuits. One way to implement digital and analog integrated circuits is to use noncovalent hybridization and strand displacement reactions in cell-free and enzyme-free nucleic acid systems. To date, DNA-based circuits involving tens of logic gates capable of implementing basic and complex logic functions have been demonstrated experimentally. However, most of these circuits are still incapable of realizing complex mathematical operations, such as square root logic operations, which can only be carried out with 4 bit binary numbers. A high-capacity DNA biocomputing system is demonstrated through the development of a 10 bit square root logic circuit. It can calculate the square root of a 10 bit binary number (within the decimal integer 900) by designing DNA sequences and programming DNA strand displacement reactions. The input signals are optimized through the output feedback to improve performance in more complex logical operations. This study provides a more universal approach for applications in biotechnology and bioengineering.
将分子计算系统编程以实现复杂自主任务的前景推动了合成生化逻辑电路的设计。在无细胞和无酶核酸系统中,实现数字和模拟集成电路的一种方法是利用非共价杂交和链置换反应。迄今为止,已经在实验中证明了涉及数十个逻辑门的基于 DNA 的电路能够实现基本和复杂的逻辑功能。然而,这些电路中的大多数仍然无法实现复杂的数学运算,例如平方根逻辑运算,只能使用 4 位二进制数进行。通过开发 10 位平方根逻辑电路,展示了一种高容量的 DNA 生物计算系统。通过设计 DNA 序列和编程 DNA 链置换反应,可以计算 10 位二进制数(十进制整数 900 内)的平方根。通过输出反馈优化输入信号,以提高更复杂逻辑运算的性能。这项研究为生物技术和生物工程中的应用提供了更通用的方法。