Suppr超能文献

癌细胞糖萼介导电力学信号转导和流动调控的侵袭。

Cancer cell glycocalyx mediates mechanotransduction and flow-regulated invasion.

机构信息

Department of Biomedical Engineering, The City College of New York/CUNY, The City University of New York, Steinman Hall, T-404C, Convent Avenue at 140th Street, New York, NY 10031, USA.

出版信息

Integr Biol (Camb). 2013 Nov;5(11):1334-43. doi: 10.1039/c3ib40057c. Epub 2013 Sep 30.

Abstract

Mammalian cells are covered by a surface proteoglycan (glycocalyx) layer, and it is known that blood vessel-lining endothelial cells use the glycocalyx to sense and transduce the shearing forces of blood flow into intracellular signals. Tumor cells in vivo are exposed to forces from interstitial fluid flow that may affect metastatic potential but are not reproduced by most in vitro cell motility assays. We hypothesized that glycocalyx-mediated mechanotransduction of interstitial flow shear stress is an un-recognized factor that can significantly enhance metastatic cell motility and play a role in augmentation of invasion. Involvement of MMP levels, cell adhesion molecules (CD44, α3 integrin), and glycocalyx components (heparan sulfate and hyaluronan) was investigated in a cell/collagen gel suspension model designed to mimic the interstitial flow microenvironment. Physiological levels of flow upregulated MMP levels and enhanced the motility of metastatic cells. Blocking the flow-enhanced expression of MMP activity or adhesion molecules (CD44 and integrins) resulted in blocking the flow-enhanced migratory activity. The presence of a glycocalyx-like layer was verified around tumor cells, and the degradation of this layer by hyaluronidase and heparinase blocked the flow-regulated invasion. This study shows for the first time that interstitial flow enhancement of metastatic cell motility can be mediated by the cell surface glycocalyx - a potential target for therapeutics.

摘要

哺乳动物细胞被一层表面蛋白聚糖(糖萼)覆盖,已知血管内皮细胞利用糖萼来感知和转导血流的切变力,并将其转化为细胞内信号。体内的肿瘤细胞暴露于间质液流动的力下,这些力可能影响转移潜力,但大多数体外细胞迁移测定都无法重现。我们假设糖萼介导的间质流切变力的机械转导是一个未被认识的因素,可以显著增强转移性细胞的迁移能力,并在侵袭增强中发挥作用。在设计用于模拟间质流微环境的细胞/胶原凝胶悬浮模型中,研究了 MMP 水平、细胞黏附分子(CD44、α3 整合素)和糖萼成分(硫酸乙酰肝素和透明质酸)的参与。生理水平的流动上调了 MMP 水平,并增强了转移性细胞的迁移能力。阻断流动增强的 MMP 活性或黏附分子(CD44 和整合素)的表达导致阻断了流动增强的迁移活性。在肿瘤细胞周围检测到了类似糖萼的层的存在,透明质酸酶和肝素酶对该层的降解阻断了流动调节的侵袭。这项研究首次表明,间质流可以通过细胞表面糖萼来介导转移性细胞迁移能力的增强,这是一种潜在的治疗靶点。

相似文献

1
Cancer cell glycocalyx mediates mechanotransduction and flow-regulated invasion.
Integr Biol (Camb). 2013 Nov;5(11):1334-43. doi: 10.1039/c3ib40057c. Epub 2013 Sep 30.
4
The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress.
Biochem Biophys Res Commun. 2007 Mar 30;355(1):228-33. doi: 10.1016/j.bbrc.2007.01.137. Epub 2007 Feb 2.
5
Endothelial Glycocalyx-Mediated Nitric Oxide Production in Response to Selective AFM Pulling.
Biophys J. 2017 Jul 11;113(1):101-108. doi: 10.1016/j.bpj.2017.05.033.
6
Mechanotransduction of the endothelial glycocalyx mediates nitric oxide production through activation of TRP channels.
Am J Physiol Cell Physiol. 2016 Dec 1;311(6):C846-C853. doi: 10.1152/ajpcell.00288.2015. Epub 2016 Sep 28.
7
Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells.
Biomech Model Mechanobiol. 2013 Jan;12(1):111-21. doi: 10.1007/s10237-012-0385-8. Epub 2012 Mar 13.
8
Endothelial Glycocalyx.
Compr Physiol. 2022 Aug 23;12(4):3781-3811. doi: 10.1002/cphy.c210029.
9
Vascular smooth muscle cell glycocalyx modulates shear-induced proliferation, migration, and NO production responses.
Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H76-83. doi: 10.1152/ajpheart.00905.2010. Epub 2010 Oct 29.
10
Role of glycocalyx in flow-induced production of nitric oxide and reactive oxygen species.
Free Radic Biol Med. 2009 Sep 1;47(5):600-7. doi: 10.1016/j.freeradbiomed.2009.05.034. Epub 2009 Jun 21.

引用本文的文献

1
Interstitial fluid transport dynamics predict glioblastoma invasion and progression.
NPJ Biomed Innov. 2025;2(1):30. doi: 10.1038/s44385-025-00033-x. Epub 2025 Sep 3.
2
Unveiling the potential of biomechanics in pioneering innovative strategies for cancer therapy.
Theranostics. 2025 Feb 10;15(7):2903-2932. doi: 10.7150/thno.108605. eCollection 2025.
3
Physical principles and mechanisms of cell migration.
NPJ Biol Phys Mech. 2025;2(1):2. doi: 10.1038/s44341-024-00008-w. Epub 2025 Jan 16.
4
Microfluidic Modulation of Microvasculature in Microdissected Tumors.
bioRxiv. 2024 Oct 7:2024.09.26.615278. doi: 10.1101/2024.09.26.615278.
5
Extracellular glypican-1 affects tumor progression and prognosis in esophageal cancer.
Cancer Med. 2024 Sep;13(18):e70212. doi: 10.1002/cam4.70212.
6
Basal endothelial glycocalyx's response to shear stress: a review of structure, function, and clinical implications.
Front Cell Dev Biol. 2024 Mar 18;12:1371769. doi: 10.3389/fcell.2024.1371769. eCollection 2024.
7
Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment.
APL Bioeng. 2024 Feb 21;8(1):011501. doi: 10.1063/5.0183302. eCollection 2024 Mar.
10
Biomimetic on-chip assay reveals the anti-metastatic potential of a novel thienopyrimidine compound in triple-negative breast cancer cell lines.
Front Bioeng Biotechnol. 2023 Sep 28;11:1227119. doi: 10.3389/fbioe.2023.1227119. eCollection 2023.

本文引用的文献

1
Integrin control of tumor invasion.
Crit Rev Eukaryot Gene Expr. 2012;22(4):309-24. doi: 10.1615/critreveukargeneexpr.v22.i4.50.
2
The structural stability of the endothelial glycocalyx after enzymatic removal of glycosaminoglycans.
PLoS One. 2012;7(8):e43168. doi: 10.1371/journal.pone.0043168. Epub 2012 Aug 14.
3
Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells.
Biomech Model Mechanobiol. 2013 Jan;12(1):111-21. doi: 10.1007/s10237-012-0385-8. Epub 2012 Mar 13.
5
Glycosaminoglycans: key players in cancer cell biology and treatment.
FEBS J. 2012 Apr;279(7):1177-97. doi: 10.1111/j.1742-4658.2012.08529.x. Epub 2012 Mar 12.
6
Molecular functions of syndecan-1 in disease.
Matrix Biol. 2012 Jan;31(1):3-16. doi: 10.1016/j.matbio.2011.10.001. Epub 2011 Oct 18.
7
Interstitial flow influences direction of tumor cell migration through competing mechanisms.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11115-20. doi: 10.1073/pnas.1103581108. Epub 2011 Jun 20.
10
Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts.
Ann Biomed Eng. 2011 Jun;39(6):1608-19. doi: 10.1007/s10439-011-0309-2. Epub 2011 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验