Suppr超能文献

知识获取的拟议方法:先天性心脏病诊断研究

Proposed methodology for knowledge acquisition: a study on congenital heart disease diagnosis.

作者信息

Leão B F, Rocha A F

机构信息

Instituto de Cardiologia do Rio Grande do Sul, Porto Alegre, Brazil.

出版信息

Methods Inf Med. 1990 Jan;29(1):30-40.

PMID:2407931
Abstract

This paper proposes a methodology for knowledge acquisition (KA) from multiple experts, in an attempt to elicit the heuristic rules followed by the physician in diagnosing twelve frequently occurring congenital heart diseases (CHD). Twenty-two pediatric cardiologists and twenty-three general cardiologists were interviewed with this technique; 274 interviews were conducted, 169 with the 22 experts, 105 with the 23 non-experts. A graph formalism was employed to represent their reasoning model, leading to the construction of a "mean reasoning model" for each diagnosis, separately for experts and non-experts. The results indicate that experts, compared to non-experts, tend to build knowledge representation models (KRM) that are smaller and less complex. Qualitative differences in information utilization between the two groups were also observed. Entropy analysis suggests a greater objectivity and cohesion of the experts' model.

摘要

本文提出了一种从多位专家获取知识(KA)的方法,旨在引出医生在诊断十二种常见先天性心脏病(CHD)时遵循的启发式规则。采用该技术对22名儿科心脏病专家和23名普通心脏病专家进行了访谈;共进行了274次访谈,其中对22名专家进行了169次访谈,对23名非专家进行了105次访谈。采用图形形式主义来表示他们的推理模型,分别为专家和非专家构建了每种诊断的“平均推理模型”。结果表明,与非专家相比,专家倾向于构建更小、更简单的知识表示模型(KRM)。还观察到两组在信息利用方面的定性差异。熵分析表明专家模型具有更高的客观性和连贯性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验