Suppr超能文献

利用 SNP 进行全基因组区间作图鉴定出脂肪型和瘦肉型鸡 F2 杂交群体中生长、体组成和几种生理变量的新 QTL。

Genome-wide interval mapping using SNPs identifies new QTL for growth, body composition and several physiological variables in an F2 intercross between fat and lean chicken lines.

机构信息

INRA, UMR1348 PEGASE, 35042 Rennes, France.

出版信息

Genet Sel Evol. 2013 Sep 30;45(1):36. doi: 10.1186/1297-9686-45-36.

Abstract

BACKGROUND

For decades, genetic improvement based on measuring growth and body composition traits has been successfully applied in the production of meat-type chickens. However, this conventional approach is hindered by antagonistic genetic correlations between some traits and the high cost of measuring body composition traits. Marker-assisted selection should overcome these problems by selecting loci that have effects on either one trait only or on more than one trait but with a favorable genetic correlation. In the present study, identification of such loci was done by genotyping an F2 intercross between fat and lean lines divergently selected for abdominal fatness genotyped with a medium-density genetic map (120 microsatellites and 1302 single nucleotide polymorphisms). Genome scan linkage analyses were performed for growth (body weight at 1, 3, 5, and 7 weeks, and shank length and diameter at 9 weeks), body composition at 9 weeks (abdominal fat weight and percentage, breast muscle weight and percentage, and thigh weight and percentage), and for several physiological measurements at 7 weeks in the fasting state, i.e. body temperature and plasma levels of IGF-I, NEFA and glucose. Interval mapping analyses were performed with the QTLMap software, including single-trait analyses with single and multiple QTL on the same chromosome.

RESULTS

Sixty-seven QTL were detected, most of which had never been described before. Of these 67 QTL, 47 were detected by single-QTL analyses and 20 by multiple-QTL analyses, which underlines the importance of using different statistical models. Close analysis of the genes located in the defined intervals identified several relevant functional candidates, such as ACACA for abdominal fatness, GHSR and GAS1 for breast muscle weight, DCRX and ASPSCR1 for plasma glucose content, and ChEBP for shank diameter.

CONCLUSIONS

The medium-density genetic map enabled us to genotype new regions of the chicken genome (including micro-chromosomes) that influenced the traits investigated. With this marker density, confidence intervals were sufficiently small (14 cM on average) to search for candidate genes. Altogether, this new information provides a valuable starting point for the identification of causative genes responsible for important QTL controlling growth, body composition and metabolic traits in the broiler chicken.

摘要

背景

几十年来,基于生长和体组成性状测量的遗传改良已成功应用于肉用鸡的生产。然而,这种传统方法受到一些性状之间存在拮抗遗传相关以及体组成性状测量成本高的阻碍。标记辅助选择应通过选择仅对一个性状或对一个以上性状有影响但具有有利遗传相关的位点来克服这些问题。在本研究中,通过对脂肪和瘦肉系之间的 F2 杂交进行基因分型来鉴定这些位点,这些系是通过对腹部脂肪进行基因型分析(使用中等密度遗传图谱(120 个微卫星和 1302 个单核苷酸多态性)进行差异选择)。对生长(1、3、5 和 7 周时的体重、9 周时的胫长和直径)、9 周时的体组成(腹部脂肪重量和百分比、胸肌重量和百分比、大腿重量和百分比)以及空腹时的几种生理测量值(即体温和 IGF-I、NEFA 和葡萄糖的血浆水平)进行了基因组扫描连锁分析。使用 QTLMap 软件进行区间映射分析,包括在同一染色体上使用单个和多个 QTL 进行的单性状分析。

结果

检测到 67 个 QTL,其中大多数以前从未描述过。在这 67 个 QTL 中,47 个是通过单 QTL 分析检测到的,20 个是通过多 QTL 分析检测到的,这突出了使用不同统计模型的重要性。对定义区间内基因的密切分析确定了几个相关的功能候选基因,例如腹部脂肪的 ACACA、胸肌重量的 GHSR 和 GAS1、血糖含量的 DCRX 和 ASPSCR1 以及胫直径的 ChEBP。

结论

中等密度的遗传图谱使我们能够对影响所研究性状的鸡基因组的新区域(包括微染色体)进行基因分型。在这种标记密度下,置信区间足够小(平均 14 cM),可以搜索候选基因。总的来说,这些新信息为鉴定控制肉鸡生长、体组成和代谢性状的重要 QTL 的致病基因提供了宝贵的起点。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验