State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences , P.O. Box 912, Beijing 100083, China.
Nano Lett. 2013;13(11):5485-90. doi: 10.1021/nl4030648. Epub 2013 Oct 9.
The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.
使用第一性原理方法计算了 MoS2/MoSe2 双层的结构和电子性质。发现层间范德华相互作用不够强,无法形成晶格匹配的相干异质结构。相反,将形成纳米级的莫尔图案结构。通过分析不同堆叠配置的电子结构,我们预测价带顶(VBM)态将由于层间电子耦合而来自 Γ 点。这通过使用线性标度三维片段方法对包含 6630 个原子的莫尔图案超胞的直接计算得到证实。发现 VBM 态被强烈局域化,而导带底(CBM)态仅被弱局域化,并且它来自 K 点的 MoS2 层。我们预测这种波函数局域化可能是许多二维(2D)范德华异质结构的普遍特征,并可能对载流子迁移率和其他电子和光学性质产生重大影响。