Suppr超能文献

扭曲过渡金属二硫属化物异质结构中的激子精细结构

Exciton fine structure in twisted transition metal dichalcogenide heterostructures.

作者信息

Kundu Sudipta, Amit Tomer, Krishnamurthy H R, Jain Manish, Refaely-Abramson Sivan

机构信息

Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012 India.

Present Address: Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 USA.

出版信息

NPJ Comput Mater. 2023;9(1):186. doi: 10.1038/s41524-023-01145-x. Epub 2023 Oct 11.

Abstract

Moiré superlattices of transition metal dichalcogenide (TMD) heterostructures give rise to rich excitonic phenomena associated with the interlayer twist angle. Theoretical calculations of excitons in such systems are typically based on model moiré potentials that mitigate the computational cost. However, predictive understanding of the electron-hole coupling dominating the excitations is crucial to realize the twist-induced modifications of the optical selection rules. In this work, we use many-body perturbation theory to evaluate the relation between twist angle and exciton properties in TMD heterostructures. We present an approach for unfolding excitonic states from the moiré Brillouin zone onto the separate-layer ones. Applying this method to a large-angle twisted MoS/MoSe bilayer, we find that the optical spectrum is dominated by mixed electron-hole transitions with different momenta in the separate monolayers, leading to unexpected hybridization between interlayer and intralayer excitons. Our findings offer a design pathway for exciton layer-localization in TMD heterostructures.

摘要

过渡金属二硫属化物(TMD)异质结构的莫尔超晶格会产生与层间扭转角相关的丰富激子现象。此类系统中激子的理论计算通常基于可降低计算成本的模型莫尔势。然而,对主导激发的电子 - 空穴耦合进行预测性理解对于实现扭转诱导的光学选择规则修改至关重要。在这项工作中,我们使用多体微扰理论来评估TMD异质结构中扭转角与激子性质之间的关系。我们提出了一种将激子态从莫尔布里渊区展开到各单层布里渊区的方法。将此方法应用于大角度扭曲的MoS/MoSe双层结构,我们发现光谱主要由不同单层中具有不同动量的混合电子 - 空穴跃迁主导,导致层间激子和层内激子之间出现意想不到的杂化。我们的研究结果为TMD异质结构中激子层定位提供了一种设计途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b39e/11621026/ae6003da988e/41524_2023_1145_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验