Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States.
Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States.
J Am Chem Soc. 2020 Dec 16;142(50):21131-21139. doi: 10.1021/jacs.0c10151. Epub 2020 Dec 7.
Emergent quantum phenomena in electronically coupled two-dimensional heterostructures are central to next-generation optical, electronic, and quantum information applications. Tailoring electronic band gaps in coupled heterostructures would permit control of such phenomena and is the subject of significant research interest. Two-dimensional polymers (2DPs) offer a compelling route to tailored band structures through the selection of molecular constituents. However, despite the promise of synthetic flexibility and electronic design, fabrication of 2DPs that form electronically coupled 2D heterostructures remains an outstanding challenge. Here, we report the rational design and optimized synthesis of electronically coupled semiconducting 2DP/2D transition metal dichalcogenide van der Waals heterostructures, demonstrate direct exfoliation of the highly crystalline and oriented 2DP films down to a few nanometers, and present the first thickness-dependent study of 2DP/MoS heterostructures. Control over the 2DP layers reveals enhancement of the 2DP photoluminescence by two orders of magnitude in ultrathin sheets and an unexpected thickness-dependent modulation of the ultrafast excited state dynamics in the 2DP/MoS heterostructure. These results provide fundamental insight into the electronic structure of 2DPs and present a route to tune emergent quantum phenomena in 2DP hybrid van der Waals heterostructures.
二维异质结构中电子耦合的涌现量子现象是下一代光学、电子和量子信息应用的核心。通过对耦合异质结构中的电子能带隙进行剪裁,可以控制这些现象,这是一个具有重要研究意义的课题。二维聚合物(2DPs)通过选择分子成分,为定制能带结构提供了一种极具吸引力的途径。然而,尽管具有合成灵活性和电子设计的优势,但要制造形成电子耦合二维异质结构的 2DPs,仍然是一个尚未解决的挑战。在这里,我们报告了电子耦合半导体 2DP/二维过渡金属二卤化物范德华异质结构的合理设计和优化合成,展示了高度结晶和取向的 2DP 薄膜的直接剥离,直至几个纳米,并首次提出了 2DP/MoS 异质结构的厚度依赖性研究。对 2DP 层的控制揭示了在超薄片材中,2DP 光致发光增强了两个数量级,以及在 2DP/MoS 异质结构中超快激发态动力学的出人意料的厚度依赖性调制。这些结果为深入了解 2DP 的电子结构提供了基础,并为在 2DP 混合范德华异质结构中调节涌现的量子现象提供了一种途径。