Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.
Bioorg Med Chem. 2013 Nov 15;21(22):7202-9. doi: 10.1016/j.bmc.2013.08.052. Epub 2013 Sep 5.
In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism.
在小鼠中,紫锥菊内酯(CYN)通过一种迄今未知的机制强烈抑制引起人类非洲锥虫病的布氏锥虫的增殖。我们假设 CYN 的α,β-不饱和亚甲基部分作为谷胱甘肽(GSH)和三肽(SH)2 的迈克尔受体,三肽(SH)2 是这些寄生虫独特的氧化还原代谢所必需的主要低分子量硫醇。分析了这种推测的机制以及 CYN 对三肽(SH)2 氧化还原代谢酶的影响,包括三肽(SH)2 还原酶、三肽(SH)2 合成酶、谷胱甘肽-S-转移酶和鸟氨酸脱羧酶。建立了两步提取方案,随后进行 UPLC-MS/MS 分析,以定量完整 T. b. rhodesiense 细胞内的 CYN、T(SH)2、GSH 以及 GS-CYN 和 T(S-CYN)2 加合物。在接触 CYN 的几分钟内,细胞内的 GSH 和 T(SH)2 池完全耗尽,寄生虫进入凋亡阶段并死亡。CYN 还显示出对鸟氨酸脱羧酶的抑制作用,类似于阳性对照依氟鸟氨酸。未观察到与参与 T(SH)2 氧化还原代谢的其他酶的显著相互作用。除了许多其他生物活性倍半萜内酯外,包括 CYN,已经显示出抗锥虫作用,据推测这与细胞亲核试剂形成迈克尔加合物有关。在这里,CYN 与生物硫醇在细胞系统中的相互作用,特别是与锥虫三肽(SH)2 氧化还原代谢的相互作用,为抗锥虫活性提供了分子解释。同时,该研究为锥虫硫醇代谢成分提供了一种新的提取和分析方案。