Department of Pediatrics, Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minn., USA.
Dev Neurosci. 2013;35(5):427-36. doi: 10.1159/000354178. Epub 2013 Sep 26.
Early-life iron deficiency anemia (IDA) alters the expression of critical genes involved in neuronal dendritic structural plasticity of the hippocampus, thus contributing to delayed maturation of electrophysiology, and learning and memory behavior in rats. Structural maturity in multiple cortical regions is characterized by the appearance of parvalbumin-positive (PV(+)) GABAergic interneurons and perineuronal nets (PNNs). Appearance of PV(+) interneurons and PNNs can serve as cellular markers for the beginning and end of a critical developmental period, respectively. During this period, the system progresses from an immature yet highly plastic condition, to a more mature and efficient state that is however less flexible and may exhibit poorer potential for recovery from injury. To test if fetal-neonatal IDA alters parvalbumin (PV) mRNA expression, protein levels, and the number of PV(+) interneurons and PNNs in the male rat hippocampus, pregnant dams were given an iron-deficient (ID) diet (3 mg iron/kg chow) from gestational day 2 to postnatal day (P) 7 and then placed on an iron-sufficient (IS) diet (198 mg/kg) for the remainder of the experiment. On this regimen, formerly ID animals become fully iron-replete by P56. Minimal levels of PV (mRNA and protein), PV(+) interneurons, and PNNs were found in IS and ID P7 rats. By P15, and continuing through P30 and P65, ID rats had reduced PV mRNA expression and protein levels compared to IS controls. While there were no differences in the number of PV(+) neurons at either P30 or P65, the percentage of PV(+) cells surrounded by PNNs was slightly greater in ID rats as compared to IS controls. The lower levels of these acknowledged critical period biomarkers in the ID group are consistent with studies that demonstrate later maturation of the acutely ID hippocampus and lower plasticity in the adult formerly ID hippocampus. The findings provide additional potential cellular bases for previously described electrophysiologic and behavioral abnormalities found during and following early-life IDA.
早期生命缺铁性贫血(IDA)改变了海马神经元树突结构可塑性相关关键基因的表达,从而导致大鼠的电生理学、学习和记忆行为发育迟缓。多个皮质区域的结构成熟表现为出现小清蛋白阳性(PV(+))GABA 能中间神经元和周围神经网(PNNs)。PV(+)中间神经元和 PNNs 的出现可以分别作为关键发育时期开始和结束的细胞标记。在此期间,该系统从不成熟但高度可塑性的状态,发展到更成熟和高效的状态,但灵活性降低,并且可能表现出从损伤中恢复的较差潜力。为了测试胎儿-新生儿 IDA 是否改变雄性大鼠海马中的小清蛋白(PV)mRNA 表达、蛋白水平以及 PV(+)中间神经元和 PNNs 的数量,从妊娠第 2 天到产后第 7 天(P),给怀孕的母鼠喂食缺铁(ID)饮食(3 毫克铁/公斤饲料),然后在整个实验过程中给母鼠喂食铁充足(IS)饮食(198 毫克铁/公斤)。按照这种方案,以前的 ID 动物在 P56 时完全铁补充。IS 和 ID P7 大鼠的 PV(mRNA 和蛋白)、PV(+)中间神经元和 PNNs 水平最低。在 P15 时,并且一直持续到 P30 和 P65,ID 大鼠的 PV mRNA 表达和蛋白水平与 IS 对照组相比降低。虽然在 P30 或 P65 时,PV(+)神经元的数量没有差异,但 ID 大鼠中被 PNNs 包围的 PV(+)细胞的百分比略高于 IS 对照组。ID 组中这些公认的关键时期生物标志物水平较低,与先前的研究一致,这些研究表明急性 ID 海马体的成熟较晚,以及成年 ID 海马体的可塑性较低。这些发现为先前描述的在早期生命 IDA 期间和之后发现的电生理和行为异常提供了额外的潜在细胞基础。