Department of Molecular Physiology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
J Gen Physiol. 2013 Oct;142(4):381-404. doi: 10.1085/jgp.201311015.
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.
钙依赖性氯离子通道在多种生物系统中发挥着关键作用。这些通道受细胞内钙离子信号的驱动,共同决定了兴奋过程,并促进溶质转运。膜蛋白 anoctamin(ANO)家族编码三种钙激活氯离子通道,分别命名为ANO1(也称为 TMEM16A)、ANO2(也称为 TMEM16B)和ANO6(也称为 TMEM16F)。在这里,我们使用通道激活过程中的非稳态电流分析研究了ANO1 和 ANO2 与 Ca2+/钙调蛋白的相互作用方式。我们在通道蛋白的 N 端区域鉴定出一个假定的钙调蛋白结合域,该结构域参与通道激活。与肽的结合研究表明,该结构域,即调节钙调蛋白结合模体(RCBM),提供了与 Ca2+/钙调蛋白两种不同的相互作用模式,一种在亚微摩尔 Ca2+浓度下,另一种在微摩尔 Ca2+范围内。功能、结构和药理学数据支持这样的概念,即钙调蛋白作为钙传感器,与 RCBM 结构域稳定结合并调节 ANO1 和 ANO2 通道的激活。此外,大脑中 ANO2 的主要剪接变体表现出 Ca2+/钙调蛋白依赖性失活,即在 30 秒内丧失通道活性。这种特性可能会限制神经元中持续 Ca2+信号期间的 ANO2 活性。突变数据表明,RCBM 结构域也参与 ANO2 的失活,并且视网膜 ANO2 剪接变体中的失活受到抑制。这些结果增进了对 anoctamin Cl-通道中 Ca2+调节的理解及其在 anoctamin 通道在神经元和其他细胞类型中发挥的生理功能中的意义。